| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnring |
|- CCfld e. Ring |
| 2 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 3 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 4 |
|
cndrng |
|- CCfld e. DivRing |
| 5 |
2 3 4
|
drngui |
|- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
| 6 |
|
eqid |
|- ( /r ` CCfld ) = ( /r ` CCfld ) |
| 7 |
2 5 6
|
dvrcl |
|- ( ( CCfld e. Ring /\ x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x ( /r ` CCfld ) y ) e. CC ) |
| 8 |
1 7
|
mp3an1 |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x ( /r ` CCfld ) y ) e. CC ) |
| 9 |
|
difssd |
|- ( x e. CC -> ( CC \ { 0 } ) C_ CC ) |
| 10 |
9
|
sselda |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> y e. CC ) |
| 11 |
|
ovmpot |
|- ( ( ( x ( /r ` CCfld ) y ) e. CC /\ y e. CC ) -> ( ( x ( /r ` CCfld ) y ) ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = ( ( x ( /r ` CCfld ) y ) x. y ) ) |
| 12 |
8 10 11
|
syl2anc |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( x ( /r ` CCfld ) y ) ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = ( ( x ( /r ` CCfld ) y ) x. y ) ) |
| 13 |
|
mpocnfldmul |
|- ( u e. CC , v e. CC |-> ( u x. v ) ) = ( .r ` CCfld ) |
| 14 |
2 5 6 13
|
dvrcan1 |
|- ( ( CCfld e. Ring /\ x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( x ( /r ` CCfld ) y ) ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = x ) |
| 15 |
1 14
|
mp3an1 |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( x ( /r ` CCfld ) y ) ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = x ) |
| 16 |
12 15
|
eqtr3d |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( x ( /r ` CCfld ) y ) x. y ) = x ) |
| 17 |
16
|
oveq1d |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( ( x ( /r ` CCfld ) y ) x. y ) / y ) = ( x / y ) ) |
| 18 |
|
eldifsni |
|- ( y e. ( CC \ { 0 } ) -> y =/= 0 ) |
| 19 |
18
|
adantl |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> y =/= 0 ) |
| 20 |
8 10 19
|
divcan4d |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( ( x ( /r ` CCfld ) y ) x. y ) / y ) = ( x ( /r ` CCfld ) y ) ) |
| 21 |
17 20
|
eqtr3d |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x / y ) = ( x ( /r ` CCfld ) y ) ) |
| 22 |
|
simpl |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> x e. CC ) |
| 23 |
|
divval |
|- ( ( x e. CC /\ y e. CC /\ y =/= 0 ) -> ( x / y ) = ( iota_ z e. CC ( y x. z ) = x ) ) |
| 24 |
22 10 19 23
|
syl3anc |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x / y ) = ( iota_ z e. CC ( y x. z ) = x ) ) |
| 25 |
21 24
|
eqtr3d |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x ( /r ` CCfld ) y ) = ( iota_ z e. CC ( y x. z ) = x ) ) |
| 26 |
|
eqid |
|- ( .r ` CCfld ) = ( .r ` CCfld ) |
| 27 |
|
eqid |
|- ( invr ` CCfld ) = ( invr ` CCfld ) |
| 28 |
2 26 5 27 6
|
dvrval |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x ( /r ` CCfld ) y ) = ( x ( .r ` CCfld ) ( ( invr ` CCfld ) ` y ) ) ) |
| 29 |
25 28
|
eqtr3d |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( iota_ z e. CC ( y x. z ) = x ) = ( x ( .r ` CCfld ) ( ( invr ` CCfld ) ` y ) ) ) |
| 30 |
29
|
mpoeq3ia |
|- ( x e. CC , y e. ( CC \ { 0 } ) |-> ( iota_ z e. CC ( y x. z ) = x ) ) = ( x e. CC , y e. ( CC \ { 0 } ) |-> ( x ( .r ` CCfld ) ( ( invr ` CCfld ) ` y ) ) ) |
| 31 |
|
df-div |
|- / = ( x e. CC , y e. ( CC \ { 0 } ) |-> ( iota_ z e. CC ( y x. z ) = x ) ) |
| 32 |
2 26 5 27 6
|
dvrfval |
|- ( /r ` CCfld ) = ( x e. CC , y e. ( CC \ { 0 } ) |-> ( x ( .r ` CCfld ) ( ( invr ` CCfld ) ` y ) ) ) |
| 33 |
30 31 32
|
3eqtr4i |
|- / = ( /r ` CCfld ) |