Step |
Hyp |
Ref |
Expression |
1 |
|
cnring |
|- CCfld e. Ring |
2 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
3 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
4 |
|
cndrng |
|- CCfld e. DivRing |
5 |
2 3 4
|
drngui |
|- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
6 |
|
eqid |
|- ( /r ` CCfld ) = ( /r ` CCfld ) |
7 |
2 5 6
|
dvrcl |
|- ( ( CCfld e. Ring /\ x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x ( /r ` CCfld ) y ) e. CC ) |
8 |
1 7
|
mp3an1 |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x ( /r ` CCfld ) y ) e. CC ) |
9 |
|
difssd |
|- ( x e. CC -> ( CC \ { 0 } ) C_ CC ) |
10 |
9
|
sselda |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> y e. CC ) |
11 |
|
ovmpot |
|- ( ( ( x ( /r ` CCfld ) y ) e. CC /\ y e. CC ) -> ( ( x ( /r ` CCfld ) y ) ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = ( ( x ( /r ` CCfld ) y ) x. y ) ) |
12 |
8 10 11
|
syl2anc |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( x ( /r ` CCfld ) y ) ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = ( ( x ( /r ` CCfld ) y ) x. y ) ) |
13 |
|
mpocnfldmul |
|- ( u e. CC , v e. CC |-> ( u x. v ) ) = ( .r ` CCfld ) |
14 |
2 5 6 13
|
dvrcan1 |
|- ( ( CCfld e. Ring /\ x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( x ( /r ` CCfld ) y ) ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = x ) |
15 |
1 14
|
mp3an1 |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( x ( /r ` CCfld ) y ) ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = x ) |
16 |
12 15
|
eqtr3d |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( x ( /r ` CCfld ) y ) x. y ) = x ) |
17 |
16
|
oveq1d |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( ( x ( /r ` CCfld ) y ) x. y ) / y ) = ( x / y ) ) |
18 |
|
eldifsni |
|- ( y e. ( CC \ { 0 } ) -> y =/= 0 ) |
19 |
18
|
adantl |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> y =/= 0 ) |
20 |
8 10 19
|
divcan4d |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( ( x ( /r ` CCfld ) y ) x. y ) / y ) = ( x ( /r ` CCfld ) y ) ) |
21 |
17 20
|
eqtr3d |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x / y ) = ( x ( /r ` CCfld ) y ) ) |
22 |
|
simpl |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> x e. CC ) |
23 |
|
divval |
|- ( ( x e. CC /\ y e. CC /\ y =/= 0 ) -> ( x / y ) = ( iota_ z e. CC ( y x. z ) = x ) ) |
24 |
22 10 19 23
|
syl3anc |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x / y ) = ( iota_ z e. CC ( y x. z ) = x ) ) |
25 |
21 24
|
eqtr3d |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x ( /r ` CCfld ) y ) = ( iota_ z e. CC ( y x. z ) = x ) ) |
26 |
|
eqid |
|- ( .r ` CCfld ) = ( .r ` CCfld ) |
27 |
|
eqid |
|- ( invr ` CCfld ) = ( invr ` CCfld ) |
28 |
2 26 5 27 6
|
dvrval |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x ( /r ` CCfld ) y ) = ( x ( .r ` CCfld ) ( ( invr ` CCfld ) ` y ) ) ) |
29 |
25 28
|
eqtr3d |
|- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( iota_ z e. CC ( y x. z ) = x ) = ( x ( .r ` CCfld ) ( ( invr ` CCfld ) ` y ) ) ) |
30 |
29
|
mpoeq3ia |
|- ( x e. CC , y e. ( CC \ { 0 } ) |-> ( iota_ z e. CC ( y x. z ) = x ) ) = ( x e. CC , y e. ( CC \ { 0 } ) |-> ( x ( .r ` CCfld ) ( ( invr ` CCfld ) ` y ) ) ) |
31 |
|
df-div |
|- / = ( x e. CC , y e. ( CC \ { 0 } ) |-> ( iota_ z e. CC ( y x. z ) = x ) ) |
32 |
2 26 5 27 6
|
dvrfval |
|- ( /r ` CCfld ) = ( x e. CC , y e. ( CC \ { 0 } ) |-> ( x ( .r ` CCfld ) ( ( invr ` CCfld ) ` y ) ) ) |
33 |
30 31 32
|
3eqtr4i |
|- / = ( /r ` CCfld ) |