Step |
Hyp |
Ref |
Expression |
1 |
|
absf |
|- abs : CC --> RR |
2 |
|
subf |
|- - : ( CC X. CC ) --> CC |
3 |
|
fco |
|- ( ( abs : CC --> RR /\ - : ( CC X. CC ) --> CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
4 |
1 2 3
|
mp2an |
|- ( abs o. - ) : ( CC X. CC ) --> RR |
5 |
|
cnex |
|- CC e. _V |
6 |
5 5
|
xpex |
|- ( CC X. CC ) e. _V |
7 |
|
reex |
|- RR e. _V |
8 |
|
fex2 |
|- ( ( ( abs o. - ) : ( CC X. CC ) --> RR /\ ( CC X. CC ) e. _V /\ RR e. _V ) -> ( abs o. - ) e. _V ) |
9 |
4 6 7 8
|
mp3an |
|- ( abs o. - ) e. _V |
10 |
|
cnfldstr |
|- CCfld Struct <. 1 , ; 1 3 >. |
11 |
|
dsid |
|- dist = Slot ( dist ` ndx ) |
12 |
|
snsstp3 |
|- { <. ( dist ` ndx ) , ( abs o. - ) >. } C_ { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } |
13 |
|
ssun1 |
|- { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } C_ ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) |
14 |
|
ssun2 |
|- ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) C_ ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
15 |
|
df-cnfld |
|- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
16 |
14 15
|
sseqtrri |
|- ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) C_ CCfld |
17 |
13 16
|
sstri |
|- { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } C_ CCfld |
18 |
12 17
|
sstri |
|- { <. ( dist ` ndx ) , ( abs o. - ) >. } C_ CCfld |
19 |
10 11 18
|
strfv |
|- ( ( abs o. - ) e. _V -> ( abs o. - ) = ( dist ` CCfld ) ) |
20 |
9 19
|
ax-mp |
|- ( abs o. - ) = ( dist ` CCfld ) |