Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( x = 0 -> ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( 0 ( .g ` ( mulGrp ` CCfld ) ) A ) ) |
2 |
|
oveq2 |
|- ( x = 0 -> ( A ^ x ) = ( A ^ 0 ) ) |
3 |
1 2
|
eqeq12d |
|- ( x = 0 -> ( ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ x ) <-> ( 0 ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ 0 ) ) ) |
4 |
3
|
imbi2d |
|- ( x = 0 -> ( ( A e. CC -> ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ x ) ) <-> ( A e. CC -> ( 0 ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ 0 ) ) ) ) |
5 |
|
oveq1 |
|- ( x = y -> ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( y ( .g ` ( mulGrp ` CCfld ) ) A ) ) |
6 |
|
oveq2 |
|- ( x = y -> ( A ^ x ) = ( A ^ y ) ) |
7 |
5 6
|
eqeq12d |
|- ( x = y -> ( ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ x ) <-> ( y ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ y ) ) ) |
8 |
7
|
imbi2d |
|- ( x = y -> ( ( A e. CC -> ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ x ) ) <-> ( A e. CC -> ( y ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ y ) ) ) ) |
9 |
|
oveq1 |
|- ( x = ( y + 1 ) -> ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( ( y + 1 ) ( .g ` ( mulGrp ` CCfld ) ) A ) ) |
10 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( A ^ x ) = ( A ^ ( y + 1 ) ) ) |
11 |
9 10
|
eqeq12d |
|- ( x = ( y + 1 ) -> ( ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ x ) <-> ( ( y + 1 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ ( y + 1 ) ) ) ) |
12 |
11
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( A e. CC -> ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ x ) ) <-> ( A e. CC -> ( ( y + 1 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ ( y + 1 ) ) ) ) ) |
13 |
|
oveq1 |
|- ( x = B -> ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( B ( .g ` ( mulGrp ` CCfld ) ) A ) ) |
14 |
|
oveq2 |
|- ( x = B -> ( A ^ x ) = ( A ^ B ) ) |
15 |
13 14
|
eqeq12d |
|- ( x = B -> ( ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ x ) <-> ( B ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ B ) ) ) |
16 |
15
|
imbi2d |
|- ( x = B -> ( ( A e. CC -> ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ x ) ) <-> ( A e. CC -> ( B ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ B ) ) ) ) |
17 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
18 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
19 |
17 18
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
20 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
21 |
17 20
|
ringidval |
|- 1 = ( 0g ` ( mulGrp ` CCfld ) ) |
22 |
|
eqid |
|- ( .g ` ( mulGrp ` CCfld ) ) = ( .g ` ( mulGrp ` CCfld ) ) |
23 |
19 21 22
|
mulg0 |
|- ( A e. CC -> ( 0 ( .g ` ( mulGrp ` CCfld ) ) A ) = 1 ) |
24 |
|
exp0 |
|- ( A e. CC -> ( A ^ 0 ) = 1 ) |
25 |
23 24
|
eqtr4d |
|- ( A e. CC -> ( 0 ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ 0 ) ) |
26 |
|
oveq1 |
|- ( ( y ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ y ) -> ( ( y ( .g ` ( mulGrp ` CCfld ) ) A ) x. A ) = ( ( A ^ y ) x. A ) ) |
27 |
|
cnring |
|- CCfld e. Ring |
28 |
17
|
ringmgp |
|- ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) |
29 |
27 28
|
ax-mp |
|- ( mulGrp ` CCfld ) e. Mnd |
30 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
31 |
17 30
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
32 |
19 22 31
|
mulgnn0p1 |
|- ( ( ( mulGrp ` CCfld ) e. Mnd /\ y e. NN0 /\ A e. CC ) -> ( ( y + 1 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( ( y ( .g ` ( mulGrp ` CCfld ) ) A ) x. A ) ) |
33 |
29 32
|
mp3an1 |
|- ( ( y e. NN0 /\ A e. CC ) -> ( ( y + 1 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( ( y ( .g ` ( mulGrp ` CCfld ) ) A ) x. A ) ) |
34 |
33
|
ancoms |
|- ( ( A e. CC /\ y e. NN0 ) -> ( ( y + 1 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( ( y ( .g ` ( mulGrp ` CCfld ) ) A ) x. A ) ) |
35 |
|
expp1 |
|- ( ( A e. CC /\ y e. NN0 ) -> ( A ^ ( y + 1 ) ) = ( ( A ^ y ) x. A ) ) |
36 |
34 35
|
eqeq12d |
|- ( ( A e. CC /\ y e. NN0 ) -> ( ( ( y + 1 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ ( y + 1 ) ) <-> ( ( y ( .g ` ( mulGrp ` CCfld ) ) A ) x. A ) = ( ( A ^ y ) x. A ) ) ) |
37 |
26 36
|
syl5ibr |
|- ( ( A e. CC /\ y e. NN0 ) -> ( ( y ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ y ) -> ( ( y + 1 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ ( y + 1 ) ) ) ) |
38 |
37
|
expcom |
|- ( y e. NN0 -> ( A e. CC -> ( ( y ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ y ) -> ( ( y + 1 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ ( y + 1 ) ) ) ) ) |
39 |
38
|
a2d |
|- ( y e. NN0 -> ( ( A e. CC -> ( y ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ y ) ) -> ( A e. CC -> ( ( y + 1 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ ( y + 1 ) ) ) ) ) |
40 |
4 8 12 16 25 39
|
nn0ind |
|- ( B e. NN0 -> ( A e. CC -> ( B ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ B ) ) ) |
41 |
40
|
impcom |
|- ( ( A e. CC /\ B e. NN0 ) -> ( B ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ B ) ) |