Metamath Proof Explorer


Theorem cnfldfun

Description: The field of complex numbers is a function. (Contributed by AV, 14-Nov-2021) (Proof shortened by AV, 11-Nov-2024)

Ref Expression
Assertion cnfldfun
|- Fun CCfld

Proof

Step Hyp Ref Expression
1 basendxnplusgndx
 |-  ( Base ` ndx ) =/= ( +g ` ndx )
2 basendxnmulrndx
 |-  ( Base ` ndx ) =/= ( .r ` ndx )
3 plusgndxnmulrndx
 |-  ( +g ` ndx ) =/= ( .r ` ndx )
4 fvex
 |-  ( Base ` ndx ) e. _V
5 fvex
 |-  ( +g ` ndx ) e. _V
6 fvex
 |-  ( .r ` ndx ) e. _V
7 cnex
 |-  CC e. _V
8 addex
 |-  + e. _V
9 mulex
 |-  x. e. _V
10 4 5 6 7 8 9 funtp
 |-  ( ( ( Base ` ndx ) =/= ( +g ` ndx ) /\ ( Base ` ndx ) =/= ( .r ` ndx ) /\ ( +g ` ndx ) =/= ( .r ` ndx ) ) -> Fun { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } )
11 1 2 3 10 mp3an
 |-  Fun { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. }
12 fvex
 |-  ( *r ` ndx ) e. _V
13 cjf
 |-  * : CC --> CC
14 fex
 |-  ( ( * : CC --> CC /\ CC e. _V ) -> * e. _V )
15 13 7 14 mp2an
 |-  * e. _V
16 12 15 funsn
 |-  Fun { <. ( *r ` ndx ) , * >. }
17 11 16 pm3.2i
 |-  ( Fun { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } /\ Fun { <. ( *r ` ndx ) , * >. } )
18 7 8 9 dmtpop
 |-  dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } = { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) }
19 15 dmsnop
 |-  dom { <. ( *r ` ndx ) , * >. } = { ( *r ` ndx ) }
20 18 19 ineq12i
 |-  ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( *r ` ndx ) , * >. } ) = ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( *r ` ndx ) } )
21 starvndxnbasendx
 |-  ( *r ` ndx ) =/= ( Base ` ndx )
22 21 necomi
 |-  ( Base ` ndx ) =/= ( *r ` ndx )
23 starvndxnplusgndx
 |-  ( *r ` ndx ) =/= ( +g ` ndx )
24 23 necomi
 |-  ( +g ` ndx ) =/= ( *r ` ndx )
25 starvndxnmulrndx
 |-  ( *r ` ndx ) =/= ( .r ` ndx )
26 25 necomi
 |-  ( .r ` ndx ) =/= ( *r ` ndx )
27 disjtpsn
 |-  ( ( ( Base ` ndx ) =/= ( *r ` ndx ) /\ ( +g ` ndx ) =/= ( *r ` ndx ) /\ ( .r ` ndx ) =/= ( *r ` ndx ) ) -> ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( *r ` ndx ) } ) = (/) )
28 22 24 26 27 mp3an
 |-  ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( *r ` ndx ) } ) = (/)
29 20 28 eqtri
 |-  ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( *r ` ndx ) , * >. } ) = (/)
30 funun
 |-  ( ( ( Fun { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } /\ Fun { <. ( *r ` ndx ) , * >. } ) /\ ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( *r ` ndx ) , * >. } ) = (/) ) -> Fun ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) )
31 17 29 30 mp2an
 |-  Fun ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } )
32 slotsdifplendx
 |-  ( ( *r ` ndx ) =/= ( le ` ndx ) /\ ( TopSet ` ndx ) =/= ( le ` ndx ) )
33 32 simpri
 |-  ( TopSet ` ndx ) =/= ( le ` ndx )
34 dsndxntsetndx
 |-  ( dist ` ndx ) =/= ( TopSet ` ndx )
35 34 necomi
 |-  ( TopSet ` ndx ) =/= ( dist ` ndx )
36 slotsdifdsndx
 |-  ( ( *r ` ndx ) =/= ( dist ` ndx ) /\ ( le ` ndx ) =/= ( dist ` ndx ) )
37 36 simpri
 |-  ( le ` ndx ) =/= ( dist ` ndx )
38 fvex
 |-  ( TopSet ` ndx ) e. _V
39 fvex
 |-  ( le ` ndx ) e. _V
40 fvex
 |-  ( dist ` ndx ) e. _V
41 fvex
 |-  ( MetOpen ` ( abs o. - ) ) e. _V
42 letsr
 |-  <_ e. TosetRel
43 42 elexi
 |-  <_ e. _V
44 absf
 |-  abs : CC --> RR
45 fex
 |-  ( ( abs : CC --> RR /\ CC e. _V ) -> abs e. _V )
46 44 7 45 mp2an
 |-  abs e. _V
47 subf
 |-  - : ( CC X. CC ) --> CC
48 7 7 xpex
 |-  ( CC X. CC ) e. _V
49 fex
 |-  ( ( - : ( CC X. CC ) --> CC /\ ( CC X. CC ) e. _V ) -> - e. _V )
50 47 48 49 mp2an
 |-  - e. _V
51 46 50 coex
 |-  ( abs o. - ) e. _V
52 38 39 40 41 43 51 funtp
 |-  ( ( ( TopSet ` ndx ) =/= ( le ` ndx ) /\ ( TopSet ` ndx ) =/= ( dist ` ndx ) /\ ( le ` ndx ) =/= ( dist ` ndx ) ) -> Fun { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } )
53 33 35 37 52 mp3an
 |-  Fun { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. }
54 fvex
 |-  ( UnifSet ` ndx ) e. _V
55 fvex
 |-  ( metUnif ` ( abs o. - ) ) e. _V
56 54 55 funsn
 |-  Fun { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. }
57 53 56 pm3.2i
 |-  ( Fun { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } /\ Fun { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } )
58 41 43 51 dmtpop
 |-  dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } = { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) }
59 55 dmsnop
 |-  dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } = { ( UnifSet ` ndx ) }
60 58 59 ineq12i
 |-  ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( UnifSet ` ndx ) } )
61 slotsdifunifndx
 |-  ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) )
62 unifndxntsetndx
 |-  ( UnifSet ` ndx ) =/= ( TopSet ` ndx )
63 62 necomi
 |-  ( TopSet ` ndx ) =/= ( UnifSet ` ndx )
64 63 a1i
 |-  ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) -> ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) )
65 64 anim1i
 |-  ( ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) -> ( ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) )
66 3anass
 |-  ( ( ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) /\ ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) <-> ( ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) )
67 65 66 sylibr
 |-  ( ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) -> ( ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) /\ ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) )
68 61 67 ax-mp
 |-  ( ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) /\ ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) )
69 disjtpsn
 |-  ( ( ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) /\ ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) -> ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) )
70 68 69 ax-mp
 |-  ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/)
71 60 70 eqtri
 |-  ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/)
72 funun
 |-  ( ( ( Fun { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } /\ Fun { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) /\ ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) ) -> Fun ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) )
73 57 71 72 mp2an
 |-  Fun ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } )
74 31 73 pm3.2i
 |-  ( Fun ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) /\ Fun ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) )
75 dmun
 |-  dom ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) = ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. dom { <. ( *r ` ndx ) , * >. } )
76 dmun
 |-  dom ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } )
77 75 76 ineq12i
 |-  ( dom ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) i^i dom ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. dom { <. ( *r ` ndx ) , * >. } ) i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) )
78 18 58 ineq12i
 |-  ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } )
79 tsetndxnbasendx
 |-  ( TopSet ` ndx ) =/= ( Base ` ndx )
80 79 necomi
 |-  ( Base ` ndx ) =/= ( TopSet ` ndx )
81 tsetndxnplusgndx
 |-  ( TopSet ` ndx ) =/= ( +g ` ndx )
82 81 necomi
 |-  ( +g ` ndx ) =/= ( TopSet ` ndx )
83 tsetndxnmulrndx
 |-  ( TopSet ` ndx ) =/= ( .r ` ndx )
84 83 necomi
 |-  ( .r ` ndx ) =/= ( TopSet ` ndx )
85 80 82 84 3pm3.2i
 |-  ( ( Base ` ndx ) =/= ( TopSet ` ndx ) /\ ( +g ` ndx ) =/= ( TopSet ` ndx ) /\ ( .r ` ndx ) =/= ( TopSet ` ndx ) )
86 plendxnbasendx
 |-  ( le ` ndx ) =/= ( Base ` ndx )
87 86 necomi
 |-  ( Base ` ndx ) =/= ( le ` ndx )
88 plendxnplusgndx
 |-  ( le ` ndx ) =/= ( +g ` ndx )
89 88 necomi
 |-  ( +g ` ndx ) =/= ( le ` ndx )
90 plendxnmulrndx
 |-  ( le ` ndx ) =/= ( .r ` ndx )
91 90 necomi
 |-  ( .r ` ndx ) =/= ( le ` ndx )
92 87 89 91 3pm3.2i
 |-  ( ( Base ` ndx ) =/= ( le ` ndx ) /\ ( +g ` ndx ) =/= ( le ` ndx ) /\ ( .r ` ndx ) =/= ( le ` ndx ) )
93 dsndxnbasendx
 |-  ( dist ` ndx ) =/= ( Base ` ndx )
94 93 necomi
 |-  ( Base ` ndx ) =/= ( dist ` ndx )
95 dsndxnplusgndx
 |-  ( dist ` ndx ) =/= ( +g ` ndx )
96 95 necomi
 |-  ( +g ` ndx ) =/= ( dist ` ndx )
97 dsndxnmulrndx
 |-  ( dist ` ndx ) =/= ( .r ` ndx )
98 97 necomi
 |-  ( .r ` ndx ) =/= ( dist ` ndx )
99 94 96 98 3pm3.2i
 |-  ( ( Base ` ndx ) =/= ( dist ` ndx ) /\ ( +g ` ndx ) =/= ( dist ` ndx ) /\ ( .r ` ndx ) =/= ( dist ` ndx ) )
100 disjtp2
 |-  ( ( ( ( Base ` ndx ) =/= ( TopSet ` ndx ) /\ ( +g ` ndx ) =/= ( TopSet ` ndx ) /\ ( .r ` ndx ) =/= ( TopSet ` ndx ) ) /\ ( ( Base ` ndx ) =/= ( le ` ndx ) /\ ( +g ` ndx ) =/= ( le ` ndx ) /\ ( .r ` ndx ) =/= ( le ` ndx ) ) /\ ( ( Base ` ndx ) =/= ( dist ` ndx ) /\ ( +g ` ndx ) =/= ( dist ` ndx ) /\ ( .r ` ndx ) =/= ( dist ` ndx ) ) ) -> ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } ) = (/) )
101 85 92 99 100 mp3an
 |-  ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } ) = (/)
102 78 101 eqtri
 |-  ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/)
103 18 59 ineq12i
 |-  ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( UnifSet ` ndx ) } )
104 unifndxnbasendx
 |-  ( UnifSet ` ndx ) =/= ( Base ` ndx )
105 104 necomi
 |-  ( Base ` ndx ) =/= ( UnifSet ` ndx )
106 105 a1i
 |-  ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) -> ( Base ` ndx ) =/= ( UnifSet ` ndx ) )
107 3simpa
 |-  ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) -> ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) )
108 3anass
 |-  ( ( ( Base ` ndx ) =/= ( UnifSet ` ndx ) /\ ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) <-> ( ( Base ` ndx ) =/= ( UnifSet ` ndx ) /\ ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) ) )
109 106 107 108 sylanbrc
 |-  ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) -> ( ( Base ` ndx ) =/= ( UnifSet ` ndx ) /\ ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) )
110 109 adantr
 |-  ( ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) -> ( ( Base ` ndx ) =/= ( UnifSet ` ndx ) /\ ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) )
111 61 110 ax-mp
 |-  ( ( Base ` ndx ) =/= ( UnifSet ` ndx ) /\ ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) )
112 disjtpsn
 |-  ( ( ( Base ` ndx ) =/= ( UnifSet ` ndx ) /\ ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) -> ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) )
113 111 112 ax-mp
 |-  ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/)
114 103 113 eqtri
 |-  ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/)
115 102 114 pm3.2i
 |-  ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) /\ ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) )
116 undisj2
 |-  ( ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) /\ ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) ) <-> ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) )
117 115 116 mpbi
 |-  ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/)
118 19 58 ineq12i
 |-  ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = ( { ( *r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } )
119 tsetndxnstarvndx
 |-  ( TopSet ` ndx ) =/= ( *r ` ndx )
120 necom
 |-  ( ( *r ` ndx ) =/= ( le ` ndx ) <-> ( le ` ndx ) =/= ( *r ` ndx ) )
121 120 biimpi
 |-  ( ( *r ` ndx ) =/= ( le ` ndx ) -> ( le ` ndx ) =/= ( *r ` ndx ) )
122 121 adantr
 |-  ( ( ( *r ` ndx ) =/= ( le ` ndx ) /\ ( TopSet ` ndx ) =/= ( le ` ndx ) ) -> ( le ` ndx ) =/= ( *r ` ndx ) )
123 32 122 ax-mp
 |-  ( le ` ndx ) =/= ( *r ` ndx )
124 necom
 |-  ( ( *r ` ndx ) =/= ( dist ` ndx ) <-> ( dist ` ndx ) =/= ( *r ` ndx ) )
125 124 biimpi
 |-  ( ( *r ` ndx ) =/= ( dist ` ndx ) -> ( dist ` ndx ) =/= ( *r ` ndx ) )
126 125 adantr
 |-  ( ( ( *r ` ndx ) =/= ( dist ` ndx ) /\ ( le ` ndx ) =/= ( dist ` ndx ) ) -> ( dist ` ndx ) =/= ( *r ` ndx ) )
127 36 126 ax-mp
 |-  ( dist ` ndx ) =/= ( *r ` ndx )
128 disjtpsn
 |-  ( ( ( TopSet ` ndx ) =/= ( *r ` ndx ) /\ ( le ` ndx ) =/= ( *r ` ndx ) /\ ( dist ` ndx ) =/= ( *r ` ndx ) ) -> ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( *r ` ndx ) } ) = (/) )
129 119 123 127 128 mp3an
 |-  ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( *r ` ndx ) } ) = (/)
130 129 ineqcomi
 |-  ( { ( *r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } ) = (/)
131 118 130 eqtri
 |-  ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/)
132 19 59 ineq12i
 |-  ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = ( { ( *r ` ndx ) } i^i { ( UnifSet ` ndx ) } )
133 simpl3
 |-  ( ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) -> ( *r ` ndx ) =/= ( UnifSet ` ndx ) )
134 61 133 ax-mp
 |-  ( *r ` ndx ) =/= ( UnifSet ` ndx )
135 disjsn2
 |-  ( ( *r ` ndx ) =/= ( UnifSet ` ndx ) -> ( { ( *r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) )
136 134 135 ax-mp
 |-  ( { ( *r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/)
137 132 136 eqtri
 |-  ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/)
138 131 137 pm3.2i
 |-  ( ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) /\ ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) )
139 undisj2
 |-  ( ( ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) /\ ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) ) <-> ( dom { <. ( *r ` ndx ) , * >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) )
140 138 139 mpbi
 |-  ( dom { <. ( *r ` ndx ) , * >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/)
141 117 140 pm3.2i
 |-  ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) /\ ( dom { <. ( *r ` ndx ) , * >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) )
142 undisj1
 |-  ( ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) /\ ( dom { <. ( *r ` ndx ) , * >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) ) <-> ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. dom { <. ( *r ` ndx ) , * >. } ) i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) )
143 141 142 mpbi
 |-  ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. dom { <. ( *r ` ndx ) , * >. } ) i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/)
144 77 143 eqtri
 |-  ( dom ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) i^i dom ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/)
145 funun
 |-  ( ( ( Fun ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) /\ Fun ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) /\ ( dom ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) i^i dom ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) ) -> Fun ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) )
146 74 144 145 mp2an
 |-  Fun ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) )
147 df-cnfld
 |-  CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) )
148 147 funeqi
 |-  ( Fun CCfld <-> Fun ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) )
149 146 148 mpbir
 |-  Fun CCfld