Step |
Hyp |
Ref |
Expression |
1 |
|
basendxnplusgndx |
|- ( Base ` ndx ) =/= ( +g ` ndx ) |
2 |
|
basendxnmulrndx |
|- ( Base ` ndx ) =/= ( .r ` ndx ) |
3 |
|
plusgndxnmulrndx |
|- ( +g ` ndx ) =/= ( .r ` ndx ) |
4 |
|
fvex |
|- ( Base ` ndx ) e. _V |
5 |
|
fvex |
|- ( +g ` ndx ) e. _V |
6 |
|
fvex |
|- ( .r ` ndx ) e. _V |
7 |
|
cnex |
|- CC e. _V |
8 |
|
addex |
|- + e. _V |
9 |
|
mulex |
|- x. e. _V |
10 |
4 5 6 7 8 9
|
funtp |
|- ( ( ( Base ` ndx ) =/= ( +g ` ndx ) /\ ( Base ` ndx ) =/= ( .r ` ndx ) /\ ( +g ` ndx ) =/= ( .r ` ndx ) ) -> Fun { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } ) |
11 |
1 2 3 10
|
mp3an |
|- Fun { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } |
12 |
|
fvex |
|- ( *r ` ndx ) e. _V |
13 |
|
cjf |
|- * : CC --> CC |
14 |
|
fex |
|- ( ( * : CC --> CC /\ CC e. _V ) -> * e. _V ) |
15 |
13 7 14
|
mp2an |
|- * e. _V |
16 |
12 15
|
funsn |
|- Fun { <. ( *r ` ndx ) , * >. } |
17 |
11 16
|
pm3.2i |
|- ( Fun { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } /\ Fun { <. ( *r ` ndx ) , * >. } ) |
18 |
7 8 9
|
dmtpop |
|- dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } = { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } |
19 |
15
|
dmsnop |
|- dom { <. ( *r ` ndx ) , * >. } = { ( *r ` ndx ) } |
20 |
18 19
|
ineq12i |
|- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( *r ` ndx ) , * >. } ) = ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( *r ` ndx ) } ) |
21 |
|
starvndxnbasendx |
|- ( *r ` ndx ) =/= ( Base ` ndx ) |
22 |
21
|
necomi |
|- ( Base ` ndx ) =/= ( *r ` ndx ) |
23 |
|
starvndxnplusgndx |
|- ( *r ` ndx ) =/= ( +g ` ndx ) |
24 |
23
|
necomi |
|- ( +g ` ndx ) =/= ( *r ` ndx ) |
25 |
|
starvndxnmulrndx |
|- ( *r ` ndx ) =/= ( .r ` ndx ) |
26 |
25
|
necomi |
|- ( .r ` ndx ) =/= ( *r ` ndx ) |
27 |
|
disjtpsn |
|- ( ( ( Base ` ndx ) =/= ( *r ` ndx ) /\ ( +g ` ndx ) =/= ( *r ` ndx ) /\ ( .r ` ndx ) =/= ( *r ` ndx ) ) -> ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( *r ` ndx ) } ) = (/) ) |
28 |
22 24 26 27
|
mp3an |
|- ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( *r ` ndx ) } ) = (/) |
29 |
20 28
|
eqtri |
|- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( *r ` ndx ) , * >. } ) = (/) |
30 |
|
funun |
|- ( ( ( Fun { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } /\ Fun { <. ( *r ` ndx ) , * >. } ) /\ ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( *r ` ndx ) , * >. } ) = (/) ) -> Fun ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) ) |
31 |
17 29 30
|
mp2an |
|- Fun ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) |
32 |
|
slotsdifplendx |
|- ( ( *r ` ndx ) =/= ( le ` ndx ) /\ ( TopSet ` ndx ) =/= ( le ` ndx ) ) |
33 |
32
|
simpri |
|- ( TopSet ` ndx ) =/= ( le ` ndx ) |
34 |
|
dsndxntsetndx |
|- ( dist ` ndx ) =/= ( TopSet ` ndx ) |
35 |
34
|
necomi |
|- ( TopSet ` ndx ) =/= ( dist ` ndx ) |
36 |
|
slotsdifdsndx |
|- ( ( *r ` ndx ) =/= ( dist ` ndx ) /\ ( le ` ndx ) =/= ( dist ` ndx ) ) |
37 |
36
|
simpri |
|- ( le ` ndx ) =/= ( dist ` ndx ) |
38 |
|
fvex |
|- ( TopSet ` ndx ) e. _V |
39 |
|
fvex |
|- ( le ` ndx ) e. _V |
40 |
|
fvex |
|- ( dist ` ndx ) e. _V |
41 |
|
fvex |
|- ( MetOpen ` ( abs o. - ) ) e. _V |
42 |
|
letsr |
|- <_ e. TosetRel |
43 |
42
|
elexi |
|- <_ e. _V |
44 |
|
absf |
|- abs : CC --> RR |
45 |
|
fex |
|- ( ( abs : CC --> RR /\ CC e. _V ) -> abs e. _V ) |
46 |
44 7 45
|
mp2an |
|- abs e. _V |
47 |
|
subf |
|- - : ( CC X. CC ) --> CC |
48 |
7 7
|
xpex |
|- ( CC X. CC ) e. _V |
49 |
|
fex |
|- ( ( - : ( CC X. CC ) --> CC /\ ( CC X. CC ) e. _V ) -> - e. _V ) |
50 |
47 48 49
|
mp2an |
|- - e. _V |
51 |
46 50
|
coex |
|- ( abs o. - ) e. _V |
52 |
38 39 40 41 43 51
|
funtp |
|- ( ( ( TopSet ` ndx ) =/= ( le ` ndx ) /\ ( TopSet ` ndx ) =/= ( dist ` ndx ) /\ ( le ` ndx ) =/= ( dist ` ndx ) ) -> Fun { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) |
53 |
33 35 37 52
|
mp3an |
|- Fun { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } |
54 |
|
fvex |
|- ( UnifSet ` ndx ) e. _V |
55 |
|
fvex |
|- ( metUnif ` ( abs o. - ) ) e. _V |
56 |
54 55
|
funsn |
|- Fun { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } |
57 |
53 56
|
pm3.2i |
|- ( Fun { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } /\ Fun { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) |
58 |
41 43 51
|
dmtpop |
|- dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } = { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } |
59 |
55
|
dmsnop |
|- dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } = { ( UnifSet ` ndx ) } |
60 |
58 59
|
ineq12i |
|- ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( UnifSet ` ndx ) } ) |
61 |
|
slotsdifunifndx |
|- ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) |
62 |
|
unifndxntsetndx |
|- ( UnifSet ` ndx ) =/= ( TopSet ` ndx ) |
63 |
62
|
necomi |
|- ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) |
64 |
63
|
a1i |
|- ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) -> ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) ) |
65 |
64
|
anim1i |
|- ( ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) -> ( ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) ) |
66 |
|
3anass |
|- ( ( ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) /\ ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) <-> ( ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) ) |
67 |
65 66
|
sylibr |
|- ( ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) -> ( ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) /\ ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) |
68 |
61 67
|
ax-mp |
|- ( ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) /\ ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) |
69 |
|
disjtpsn |
|- ( ( ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) /\ ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) -> ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) ) |
70 |
68 69
|
ax-mp |
|- ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) |
71 |
60 70
|
eqtri |
|- ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) |
72 |
|
funun |
|- ( ( ( Fun { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } /\ Fun { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) /\ ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) ) -> Fun ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
73 |
57 71 72
|
mp2an |
|- Fun ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) |
74 |
31 73
|
pm3.2i |
|- ( Fun ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) /\ Fun ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
75 |
|
dmun |
|- dom ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) = ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. dom { <. ( *r ` ndx ) , * >. } ) |
76 |
|
dmun |
|- dom ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) |
77 |
75 76
|
ineq12i |
|- ( dom ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) i^i dom ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. dom { <. ( *r ` ndx ) , * >. } ) i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
78 |
18 58
|
ineq12i |
|- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } ) |
79 |
|
tsetndxnbasendx |
|- ( TopSet ` ndx ) =/= ( Base ` ndx ) |
80 |
79
|
necomi |
|- ( Base ` ndx ) =/= ( TopSet ` ndx ) |
81 |
|
tsetndxnplusgndx |
|- ( TopSet ` ndx ) =/= ( +g ` ndx ) |
82 |
81
|
necomi |
|- ( +g ` ndx ) =/= ( TopSet ` ndx ) |
83 |
|
tsetndxnmulrndx |
|- ( TopSet ` ndx ) =/= ( .r ` ndx ) |
84 |
83
|
necomi |
|- ( .r ` ndx ) =/= ( TopSet ` ndx ) |
85 |
80 82 84
|
3pm3.2i |
|- ( ( Base ` ndx ) =/= ( TopSet ` ndx ) /\ ( +g ` ndx ) =/= ( TopSet ` ndx ) /\ ( .r ` ndx ) =/= ( TopSet ` ndx ) ) |
86 |
|
plendxnbasendx |
|- ( le ` ndx ) =/= ( Base ` ndx ) |
87 |
86
|
necomi |
|- ( Base ` ndx ) =/= ( le ` ndx ) |
88 |
|
plendxnplusgndx |
|- ( le ` ndx ) =/= ( +g ` ndx ) |
89 |
88
|
necomi |
|- ( +g ` ndx ) =/= ( le ` ndx ) |
90 |
|
plendxnmulrndx |
|- ( le ` ndx ) =/= ( .r ` ndx ) |
91 |
90
|
necomi |
|- ( .r ` ndx ) =/= ( le ` ndx ) |
92 |
87 89 91
|
3pm3.2i |
|- ( ( Base ` ndx ) =/= ( le ` ndx ) /\ ( +g ` ndx ) =/= ( le ` ndx ) /\ ( .r ` ndx ) =/= ( le ` ndx ) ) |
93 |
|
dsndxnbasendx |
|- ( dist ` ndx ) =/= ( Base ` ndx ) |
94 |
93
|
necomi |
|- ( Base ` ndx ) =/= ( dist ` ndx ) |
95 |
|
dsndxnplusgndx |
|- ( dist ` ndx ) =/= ( +g ` ndx ) |
96 |
95
|
necomi |
|- ( +g ` ndx ) =/= ( dist ` ndx ) |
97 |
|
dsndxnmulrndx |
|- ( dist ` ndx ) =/= ( .r ` ndx ) |
98 |
97
|
necomi |
|- ( .r ` ndx ) =/= ( dist ` ndx ) |
99 |
94 96 98
|
3pm3.2i |
|- ( ( Base ` ndx ) =/= ( dist ` ndx ) /\ ( +g ` ndx ) =/= ( dist ` ndx ) /\ ( .r ` ndx ) =/= ( dist ` ndx ) ) |
100 |
|
disjtp2 |
|- ( ( ( ( Base ` ndx ) =/= ( TopSet ` ndx ) /\ ( +g ` ndx ) =/= ( TopSet ` ndx ) /\ ( .r ` ndx ) =/= ( TopSet ` ndx ) ) /\ ( ( Base ` ndx ) =/= ( le ` ndx ) /\ ( +g ` ndx ) =/= ( le ` ndx ) /\ ( .r ` ndx ) =/= ( le ` ndx ) ) /\ ( ( Base ` ndx ) =/= ( dist ` ndx ) /\ ( +g ` ndx ) =/= ( dist ` ndx ) /\ ( .r ` ndx ) =/= ( dist ` ndx ) ) ) -> ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } ) = (/) ) |
101 |
85 92 99 100
|
mp3an |
|- ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } ) = (/) |
102 |
78 101
|
eqtri |
|- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) |
103 |
18 59
|
ineq12i |
|- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) |
104 |
|
unifndxnbasendx |
|- ( UnifSet ` ndx ) =/= ( Base ` ndx ) |
105 |
104
|
necomi |
|- ( Base ` ndx ) =/= ( UnifSet ` ndx ) |
106 |
105
|
a1i |
|- ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) -> ( Base ` ndx ) =/= ( UnifSet ` ndx ) ) |
107 |
|
3simpa |
|- ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) -> ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) ) |
108 |
|
3anass |
|- ( ( ( Base ` ndx ) =/= ( UnifSet ` ndx ) /\ ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) <-> ( ( Base ` ndx ) =/= ( UnifSet ` ndx ) /\ ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) ) ) |
109 |
106 107 108
|
sylanbrc |
|- ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) -> ( ( Base ` ndx ) =/= ( UnifSet ` ndx ) /\ ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) ) |
110 |
109
|
adantr |
|- ( ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) -> ( ( Base ` ndx ) =/= ( UnifSet ` ndx ) /\ ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) ) |
111 |
61 110
|
ax-mp |
|- ( ( Base ` ndx ) =/= ( UnifSet ` ndx ) /\ ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) |
112 |
|
disjtpsn |
|- ( ( ( Base ` ndx ) =/= ( UnifSet ` ndx ) /\ ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) -> ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) ) |
113 |
111 112
|
ax-mp |
|- ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) |
114 |
103 113
|
eqtri |
|- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) |
115 |
102 114
|
pm3.2i |
|- ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) /\ ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) ) |
116 |
|
undisj2 |
|- ( ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) /\ ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) ) <-> ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) ) |
117 |
115 116
|
mpbi |
|- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) |
118 |
19 58
|
ineq12i |
|- ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = ( { ( *r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } ) |
119 |
|
tsetndxnstarvndx |
|- ( TopSet ` ndx ) =/= ( *r ` ndx ) |
120 |
|
necom |
|- ( ( *r ` ndx ) =/= ( le ` ndx ) <-> ( le ` ndx ) =/= ( *r ` ndx ) ) |
121 |
120
|
biimpi |
|- ( ( *r ` ndx ) =/= ( le ` ndx ) -> ( le ` ndx ) =/= ( *r ` ndx ) ) |
122 |
121
|
adantr |
|- ( ( ( *r ` ndx ) =/= ( le ` ndx ) /\ ( TopSet ` ndx ) =/= ( le ` ndx ) ) -> ( le ` ndx ) =/= ( *r ` ndx ) ) |
123 |
32 122
|
ax-mp |
|- ( le ` ndx ) =/= ( *r ` ndx ) |
124 |
|
necom |
|- ( ( *r ` ndx ) =/= ( dist ` ndx ) <-> ( dist ` ndx ) =/= ( *r ` ndx ) ) |
125 |
124
|
biimpi |
|- ( ( *r ` ndx ) =/= ( dist ` ndx ) -> ( dist ` ndx ) =/= ( *r ` ndx ) ) |
126 |
125
|
adantr |
|- ( ( ( *r ` ndx ) =/= ( dist ` ndx ) /\ ( le ` ndx ) =/= ( dist ` ndx ) ) -> ( dist ` ndx ) =/= ( *r ` ndx ) ) |
127 |
36 126
|
ax-mp |
|- ( dist ` ndx ) =/= ( *r ` ndx ) |
128 |
|
disjtpsn |
|- ( ( ( TopSet ` ndx ) =/= ( *r ` ndx ) /\ ( le ` ndx ) =/= ( *r ` ndx ) /\ ( dist ` ndx ) =/= ( *r ` ndx ) ) -> ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( *r ` ndx ) } ) = (/) ) |
129 |
119 123 127 128
|
mp3an |
|- ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( *r ` ndx ) } ) = (/) |
130 |
129
|
ineqcomi |
|- ( { ( *r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } ) = (/) |
131 |
118 130
|
eqtri |
|- ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) |
132 |
19 59
|
ineq12i |
|- ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = ( { ( *r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) |
133 |
|
simpl3 |
|- ( ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) -> ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) |
134 |
61 133
|
ax-mp |
|- ( *r ` ndx ) =/= ( UnifSet ` ndx ) |
135 |
|
disjsn2 |
|- ( ( *r ` ndx ) =/= ( UnifSet ` ndx ) -> ( { ( *r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) ) |
136 |
134 135
|
ax-mp |
|- ( { ( *r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) |
137 |
132 136
|
eqtri |
|- ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) |
138 |
131 137
|
pm3.2i |
|- ( ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) /\ ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) ) |
139 |
|
undisj2 |
|- ( ( ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) /\ ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) ) <-> ( dom { <. ( *r ` ndx ) , * >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) ) |
140 |
138 139
|
mpbi |
|- ( dom { <. ( *r ` ndx ) , * >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) |
141 |
117 140
|
pm3.2i |
|- ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) /\ ( dom { <. ( *r ` ndx ) , * >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) ) |
142 |
|
undisj1 |
|- ( ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) /\ ( dom { <. ( *r ` ndx ) , * >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) ) <-> ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. dom { <. ( *r ` ndx ) , * >. } ) i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) ) |
143 |
141 142
|
mpbi |
|- ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. dom { <. ( *r ` ndx ) , * >. } ) i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) |
144 |
77 143
|
eqtri |
|- ( dom ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) i^i dom ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) |
145 |
|
funun |
|- ( ( ( Fun ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) /\ Fun ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) /\ ( dom ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) i^i dom ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) ) -> Fun ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
146 |
74 144 145
|
mp2an |
|- Fun ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
147 |
|
df-cnfld |
|- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
148 |
147
|
funeqi |
|- ( Fun CCfld <-> Fun ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
149 |
146 148
|
mpbir |
|- Fun CCfld |