Metamath Proof Explorer


Theorem cnfldhaus

Description: The topology of the complex numbers is Hausdorff. (Contributed by Mario Carneiro, 8-Sep-2015)

Ref Expression
Hypothesis cnfldtopn.1
|- J = ( TopOpen ` CCfld )
Assertion cnfldhaus
|- J e. Haus

Proof

Step Hyp Ref Expression
1 cnfldtopn.1
 |-  J = ( TopOpen ` CCfld )
2 cnxmet
 |-  ( abs o. - ) e. ( *Met ` CC )
3 1 cnfldtopn
 |-  J = ( MetOpen ` ( abs o. - ) )
4 3 methaus
 |-  ( ( abs o. - ) e. ( *Met ` CC ) -> J e. Haus )
5 2 4 ax-mp
 |-  J e. Haus