| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifsn |
|- ( X e. ( CC \ { 0 } ) <-> ( X e. CC /\ X =/= 0 ) ) |
| 2 |
|
cnring |
|- CCfld e. Ring |
| 3 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 4 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 5 |
|
cndrng |
|- CCfld e. DivRing |
| 6 |
3 4 5
|
drngui |
|- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
| 7 |
|
cnflddiv |
|- / = ( /r ` CCfld ) |
| 8 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
| 9 |
|
eqid |
|- ( invr ` CCfld ) = ( invr ` CCfld ) |
| 10 |
3 6 7 8 9
|
ringinvdv |
|- ( ( CCfld e. Ring /\ X e. ( CC \ { 0 } ) ) -> ( ( invr ` CCfld ) ` X ) = ( 1 / X ) ) |
| 11 |
2 10
|
mpan |
|- ( X e. ( CC \ { 0 } ) -> ( ( invr ` CCfld ) ` X ) = ( 1 / X ) ) |
| 12 |
1 11
|
sylbir |
|- ( ( X e. CC /\ X =/= 0 ) -> ( ( invr ` CCfld ) ` X ) = ( 1 / X ) ) |