Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsn |
|- ( X e. ( CC \ { 0 } ) <-> ( X e. CC /\ X =/= 0 ) ) |
2 |
|
cnring |
|- CCfld e. Ring |
3 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
4 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
5 |
|
cndrng |
|- CCfld e. DivRing |
6 |
3 4 5
|
drngui |
|- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
7 |
|
cnflddiv |
|- / = ( /r ` CCfld ) |
8 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
9 |
|
eqid |
|- ( invr ` CCfld ) = ( invr ` CCfld ) |
10 |
3 6 7 8 9
|
ringinvdv |
|- ( ( CCfld e. Ring /\ X e. ( CC \ { 0 } ) ) -> ( ( invr ` CCfld ) ` X ) = ( 1 / X ) ) |
11 |
2 10
|
mpan |
|- ( X e. ( CC \ { 0 } ) -> ( ( invr ` CCfld ) ` X ) = ( 1 / X ) ) |
12 |
1 11
|
sylbir |
|- ( ( X e. CC /\ X =/= 0 ) -> ( ( invr ` CCfld ) ` X ) = ( 1 / X ) ) |