Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( x = 0 -> ( x ( .g ` CCfld ) B ) = ( 0 ( .g ` CCfld ) B ) ) |
2 |
|
oveq1 |
|- ( x = 0 -> ( x x. B ) = ( 0 x. B ) ) |
3 |
1 2
|
eqeq12d |
|- ( x = 0 -> ( ( x ( .g ` CCfld ) B ) = ( x x. B ) <-> ( 0 ( .g ` CCfld ) B ) = ( 0 x. B ) ) ) |
4 |
|
oveq1 |
|- ( x = y -> ( x ( .g ` CCfld ) B ) = ( y ( .g ` CCfld ) B ) ) |
5 |
|
oveq1 |
|- ( x = y -> ( x x. B ) = ( y x. B ) ) |
6 |
4 5
|
eqeq12d |
|- ( x = y -> ( ( x ( .g ` CCfld ) B ) = ( x x. B ) <-> ( y ( .g ` CCfld ) B ) = ( y x. B ) ) ) |
7 |
|
oveq1 |
|- ( x = ( y + 1 ) -> ( x ( .g ` CCfld ) B ) = ( ( y + 1 ) ( .g ` CCfld ) B ) ) |
8 |
|
oveq1 |
|- ( x = ( y + 1 ) -> ( x x. B ) = ( ( y + 1 ) x. B ) ) |
9 |
7 8
|
eqeq12d |
|- ( x = ( y + 1 ) -> ( ( x ( .g ` CCfld ) B ) = ( x x. B ) <-> ( ( y + 1 ) ( .g ` CCfld ) B ) = ( ( y + 1 ) x. B ) ) ) |
10 |
|
oveq1 |
|- ( x = -u y -> ( x ( .g ` CCfld ) B ) = ( -u y ( .g ` CCfld ) B ) ) |
11 |
|
oveq1 |
|- ( x = -u y -> ( x x. B ) = ( -u y x. B ) ) |
12 |
10 11
|
eqeq12d |
|- ( x = -u y -> ( ( x ( .g ` CCfld ) B ) = ( x x. B ) <-> ( -u y ( .g ` CCfld ) B ) = ( -u y x. B ) ) ) |
13 |
|
oveq1 |
|- ( x = A -> ( x ( .g ` CCfld ) B ) = ( A ( .g ` CCfld ) B ) ) |
14 |
|
oveq1 |
|- ( x = A -> ( x x. B ) = ( A x. B ) ) |
15 |
13 14
|
eqeq12d |
|- ( x = A -> ( ( x ( .g ` CCfld ) B ) = ( x x. B ) <-> ( A ( .g ` CCfld ) B ) = ( A x. B ) ) ) |
16 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
17 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
18 |
|
eqid |
|- ( .g ` CCfld ) = ( .g ` CCfld ) |
19 |
16 17 18
|
mulg0 |
|- ( B e. CC -> ( 0 ( .g ` CCfld ) B ) = 0 ) |
20 |
|
mul02 |
|- ( B e. CC -> ( 0 x. B ) = 0 ) |
21 |
19 20
|
eqtr4d |
|- ( B e. CC -> ( 0 ( .g ` CCfld ) B ) = ( 0 x. B ) ) |
22 |
|
oveq1 |
|- ( ( y ( .g ` CCfld ) B ) = ( y x. B ) -> ( ( y ( .g ` CCfld ) B ) + B ) = ( ( y x. B ) + B ) ) |
23 |
|
cnring |
|- CCfld e. Ring |
24 |
|
ringmnd |
|- ( CCfld e. Ring -> CCfld e. Mnd ) |
25 |
23 24
|
ax-mp |
|- CCfld e. Mnd |
26 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
27 |
16 18 26
|
mulgnn0p1 |
|- ( ( CCfld e. Mnd /\ y e. NN0 /\ B e. CC ) -> ( ( y + 1 ) ( .g ` CCfld ) B ) = ( ( y ( .g ` CCfld ) B ) + B ) ) |
28 |
25 27
|
mp3an1 |
|- ( ( y e. NN0 /\ B e. CC ) -> ( ( y + 1 ) ( .g ` CCfld ) B ) = ( ( y ( .g ` CCfld ) B ) + B ) ) |
29 |
|
nn0cn |
|- ( y e. NN0 -> y e. CC ) |
30 |
29
|
adantr |
|- ( ( y e. NN0 /\ B e. CC ) -> y e. CC ) |
31 |
|
simpr |
|- ( ( y e. NN0 /\ B e. CC ) -> B e. CC ) |
32 |
30 31
|
adddirp1d |
|- ( ( y e. NN0 /\ B e. CC ) -> ( ( y + 1 ) x. B ) = ( ( y x. B ) + B ) ) |
33 |
28 32
|
eqeq12d |
|- ( ( y e. NN0 /\ B e. CC ) -> ( ( ( y + 1 ) ( .g ` CCfld ) B ) = ( ( y + 1 ) x. B ) <-> ( ( y ( .g ` CCfld ) B ) + B ) = ( ( y x. B ) + B ) ) ) |
34 |
22 33
|
syl5ibr |
|- ( ( y e. NN0 /\ B e. CC ) -> ( ( y ( .g ` CCfld ) B ) = ( y x. B ) -> ( ( y + 1 ) ( .g ` CCfld ) B ) = ( ( y + 1 ) x. B ) ) ) |
35 |
34
|
expcom |
|- ( B e. CC -> ( y e. NN0 -> ( ( y ( .g ` CCfld ) B ) = ( y x. B ) -> ( ( y + 1 ) ( .g ` CCfld ) B ) = ( ( y + 1 ) x. B ) ) ) ) |
36 |
|
fveq2 |
|- ( ( y ( .g ` CCfld ) B ) = ( y x. B ) -> ( ( invg ` CCfld ) ` ( y ( .g ` CCfld ) B ) ) = ( ( invg ` CCfld ) ` ( y x. B ) ) ) |
37 |
|
eqid |
|- ( invg ` CCfld ) = ( invg ` CCfld ) |
38 |
16 18 37
|
mulgnegnn |
|- ( ( y e. NN /\ B e. CC ) -> ( -u y ( .g ` CCfld ) B ) = ( ( invg ` CCfld ) ` ( y ( .g ` CCfld ) B ) ) ) |
39 |
|
nncn |
|- ( y e. NN -> y e. CC ) |
40 |
|
mulneg1 |
|- ( ( y e. CC /\ B e. CC ) -> ( -u y x. B ) = -u ( y x. B ) ) |
41 |
39 40
|
sylan |
|- ( ( y e. NN /\ B e. CC ) -> ( -u y x. B ) = -u ( y x. B ) ) |
42 |
|
mulcl |
|- ( ( y e. CC /\ B e. CC ) -> ( y x. B ) e. CC ) |
43 |
39 42
|
sylan |
|- ( ( y e. NN /\ B e. CC ) -> ( y x. B ) e. CC ) |
44 |
|
cnfldneg |
|- ( ( y x. B ) e. CC -> ( ( invg ` CCfld ) ` ( y x. B ) ) = -u ( y x. B ) ) |
45 |
43 44
|
syl |
|- ( ( y e. NN /\ B e. CC ) -> ( ( invg ` CCfld ) ` ( y x. B ) ) = -u ( y x. B ) ) |
46 |
41 45
|
eqtr4d |
|- ( ( y e. NN /\ B e. CC ) -> ( -u y x. B ) = ( ( invg ` CCfld ) ` ( y x. B ) ) ) |
47 |
38 46
|
eqeq12d |
|- ( ( y e. NN /\ B e. CC ) -> ( ( -u y ( .g ` CCfld ) B ) = ( -u y x. B ) <-> ( ( invg ` CCfld ) ` ( y ( .g ` CCfld ) B ) ) = ( ( invg ` CCfld ) ` ( y x. B ) ) ) ) |
48 |
36 47
|
syl5ibr |
|- ( ( y e. NN /\ B e. CC ) -> ( ( y ( .g ` CCfld ) B ) = ( y x. B ) -> ( -u y ( .g ` CCfld ) B ) = ( -u y x. B ) ) ) |
49 |
48
|
expcom |
|- ( B e. CC -> ( y e. NN -> ( ( y ( .g ` CCfld ) B ) = ( y x. B ) -> ( -u y ( .g ` CCfld ) B ) = ( -u y x. B ) ) ) ) |
50 |
3 6 9 12 15 21 35 49
|
zindd |
|- ( B e. CC -> ( A e. ZZ -> ( A ( .g ` CCfld ) B ) = ( A x. B ) ) ) |
51 |
50
|
impcom |
|- ( ( A e. ZZ /\ B e. CC ) -> ( A ( .g ` CCfld ) B ) = ( A x. B ) ) |