| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negid |
|- ( X e. CC -> ( X + -u X ) = 0 ) |
| 2 |
|
negcl |
|- ( X e. CC -> -u X e. CC ) |
| 3 |
|
cnring |
|- CCfld e. Ring |
| 4 |
|
ringgrp |
|- ( CCfld e. Ring -> CCfld e. Grp ) |
| 5 |
3 4
|
ax-mp |
|- CCfld e. Grp |
| 6 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 7 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 8 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 9 |
|
eqid |
|- ( invg ` CCfld ) = ( invg ` CCfld ) |
| 10 |
6 7 8 9
|
grpinvid1 |
|- ( ( CCfld e. Grp /\ X e. CC /\ -u X e. CC ) -> ( ( ( invg ` CCfld ) ` X ) = -u X <-> ( X + -u X ) = 0 ) ) |
| 11 |
5 10
|
mp3an1 |
|- ( ( X e. CC /\ -u X e. CC ) -> ( ( ( invg ` CCfld ) ` X ) = -u X <-> ( X + -u X ) = 0 ) ) |
| 12 |
2 11
|
mpdan |
|- ( X e. CC -> ( ( ( invg ` CCfld ) ` X ) = -u X <-> ( X + -u X ) = 0 ) ) |
| 13 |
1 12
|
mpbird |
|- ( X e. CC -> ( ( invg ` CCfld ) ` X ) = -u X ) |