Step |
Hyp |
Ref |
Expression |
1 |
|
0cn |
|- 0 e. CC |
2 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
3 |
2
|
cnmetdval |
|- ( ( x e. CC /\ 0 e. CC ) -> ( x ( abs o. - ) 0 ) = ( abs ` ( x - 0 ) ) ) |
4 |
1 3
|
mpan2 |
|- ( x e. CC -> ( x ( abs o. - ) 0 ) = ( abs ` ( x - 0 ) ) ) |
5 |
|
subid1 |
|- ( x e. CC -> ( x - 0 ) = x ) |
6 |
5
|
fveq2d |
|- ( x e. CC -> ( abs ` ( x - 0 ) ) = ( abs ` x ) ) |
7 |
4 6
|
eqtrd |
|- ( x e. CC -> ( x ( abs o. - ) 0 ) = ( abs ` x ) ) |
8 |
7
|
mpteq2ia |
|- ( x e. CC |-> ( x ( abs o. - ) 0 ) ) = ( x e. CC |-> ( abs ` x ) ) |
9 |
|
eqid |
|- ( norm ` CCfld ) = ( norm ` CCfld ) |
10 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
11 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
12 |
|
cnfldds |
|- ( abs o. - ) = ( dist ` CCfld ) |
13 |
9 10 11 12
|
nmfval |
|- ( norm ` CCfld ) = ( x e. CC |-> ( x ( abs o. - ) 0 ) ) |
14 |
|
absf |
|- abs : CC --> RR |
15 |
14
|
a1i |
|- ( T. -> abs : CC --> RR ) |
16 |
15
|
feqmptd |
|- ( T. -> abs = ( x e. CC |-> ( abs ` x ) ) ) |
17 |
16
|
mptru |
|- abs = ( x e. CC |-> ( abs ` x ) ) |
18 |
8 13 17
|
3eqtr4ri |
|- abs = ( norm ` CCfld ) |