Step |
Hyp |
Ref |
Expression |
1 |
|
df-cnfld |
|- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
2 |
|
eqid |
|- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) |
3 |
2
|
srngstr |
|- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) Struct <. 1 , 4 >. |
4 |
|
9nn |
|- 9 e. NN |
5 |
|
tsetndx |
|- ( TopSet ` ndx ) = 9 |
6 |
|
9lt10 |
|- 9 < ; 1 0 |
7 |
|
10nn |
|- ; 1 0 e. NN |
8 |
|
plendx |
|- ( le ` ndx ) = ; 1 0 |
9 |
|
1nn0 |
|- 1 e. NN0 |
10 |
|
0nn0 |
|- 0 e. NN0 |
11 |
|
2nn |
|- 2 e. NN |
12 |
|
2pos |
|- 0 < 2 |
13 |
9 10 11 12
|
declt |
|- ; 1 0 < ; 1 2 |
14 |
9 11
|
decnncl |
|- ; 1 2 e. NN |
15 |
|
dsndx |
|- ( dist ` ndx ) = ; 1 2 |
16 |
4 5 6 7 8 13 14 15
|
strle3 |
|- { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } Struct <. 9 , ; 1 2 >. |
17 |
|
3nn |
|- 3 e. NN |
18 |
9 17
|
decnncl |
|- ; 1 3 e. NN |
19 |
|
unifndx |
|- ( UnifSet ` ndx ) = ; 1 3 |
20 |
18 19
|
strle1 |
|- { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } Struct <. ; 1 3 , ; 1 3 >. |
21 |
|
2nn0 |
|- 2 e. NN0 |
22 |
|
2lt3 |
|- 2 < 3 |
23 |
9 21 17 22
|
declt |
|- ; 1 2 < ; 1 3 |
24 |
16 20 23
|
strleun |
|- ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) Struct <. 9 , ; 1 3 >. |
25 |
|
4lt9 |
|- 4 < 9 |
26 |
3 24 25
|
strleun |
|- ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) Struct <. 1 , ; 1 3 >. |
27 |
1 26
|
eqbrtri |
|- CCfld Struct <. 1 , ; 1 3 >. |