| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-cnfld |  |-  CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) | 
						
							| 2 |  | eqid |  |-  ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) | 
						
							| 3 | 2 | srngstr |  |-  ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) Struct <. 1 , 4 >. | 
						
							| 4 |  | 9nn |  |-  9 e. NN | 
						
							| 5 |  | tsetndx |  |-  ( TopSet ` ndx ) = 9 | 
						
							| 6 |  | 9lt10 |  |-  9 < ; 1 0 | 
						
							| 7 |  | 10nn |  |-  ; 1 0 e. NN | 
						
							| 8 |  | plendx |  |-  ( le ` ndx ) = ; 1 0 | 
						
							| 9 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 10 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 11 |  | 2nn |  |-  2 e. NN | 
						
							| 12 |  | 2pos |  |-  0 < 2 | 
						
							| 13 | 9 10 11 12 | declt |  |-  ; 1 0 < ; 1 2 | 
						
							| 14 | 9 11 | decnncl |  |-  ; 1 2 e. NN | 
						
							| 15 |  | dsndx |  |-  ( dist ` ndx ) = ; 1 2 | 
						
							| 16 | 4 5 6 7 8 13 14 15 | strle3 |  |-  { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } Struct <. 9 , ; 1 2 >. | 
						
							| 17 |  | 3nn |  |-  3 e. NN | 
						
							| 18 | 9 17 | decnncl |  |-  ; 1 3 e. NN | 
						
							| 19 |  | unifndx |  |-  ( UnifSet ` ndx ) = ; 1 3 | 
						
							| 20 | 18 19 | strle1 |  |-  { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } Struct <. ; 1 3 , ; 1 3 >. | 
						
							| 21 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 22 |  | 2lt3 |  |-  2 < 3 | 
						
							| 23 | 9 21 17 22 | declt |  |-  ; 1 2 < ; 1 3 | 
						
							| 24 | 16 20 23 | strleun |  |-  ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) Struct <. 9 , ; 1 3 >. | 
						
							| 25 |  | 4lt9 |  |-  4 < 9 | 
						
							| 26 | 3 24 25 | strleun |  |-  ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) Struct <. 1 , ; 1 3 >. | 
						
							| 27 | 1 26 | eqbrtri |  |-  CCfld Struct <. 1 , ; 1 3 >. |