Step |
Hyp |
Ref |
Expression |
1 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
2 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
3 |
|
eqid |
|- ( invg ` CCfld ) = ( invg ` CCfld ) |
4 |
|
eqid |
|- ( -g ` CCfld ) = ( -g ` CCfld ) |
5 |
1 2 3 4
|
grpsubval |
|- ( ( x e. CC /\ y e. CC ) -> ( x ( -g ` CCfld ) y ) = ( x + ( ( invg ` CCfld ) ` y ) ) ) |
6 |
|
cnfldneg |
|- ( y e. CC -> ( ( invg ` CCfld ) ` y ) = -u y ) |
7 |
6
|
adantl |
|- ( ( x e. CC /\ y e. CC ) -> ( ( invg ` CCfld ) ` y ) = -u y ) |
8 |
7
|
oveq2d |
|- ( ( x e. CC /\ y e. CC ) -> ( x + ( ( invg ` CCfld ) ` y ) ) = ( x + -u y ) ) |
9 |
|
negsub |
|- ( ( x e. CC /\ y e. CC ) -> ( x + -u y ) = ( x - y ) ) |
10 |
5 8 9
|
3eqtrrd |
|- ( ( x e. CC /\ y e. CC ) -> ( x - y ) = ( x ( -g ` CCfld ) y ) ) |
11 |
10
|
mpoeq3ia |
|- ( x e. CC , y e. CC |-> ( x - y ) ) = ( x e. CC , y e. CC |-> ( x ( -g ` CCfld ) y ) ) |
12 |
|
subf |
|- - : ( CC X. CC ) --> CC |
13 |
|
ffn |
|- ( - : ( CC X. CC ) --> CC -> - Fn ( CC X. CC ) ) |
14 |
12 13
|
ax-mp |
|- - Fn ( CC X. CC ) |
15 |
|
fnov |
|- ( - Fn ( CC X. CC ) <-> - = ( x e. CC , y e. CC |-> ( x - y ) ) ) |
16 |
14 15
|
mpbi |
|- - = ( x e. CC , y e. CC |-> ( x - y ) ) |
17 |
|
cnring |
|- CCfld e. Ring |
18 |
|
ringgrp |
|- ( CCfld e. Ring -> CCfld e. Grp ) |
19 |
17 18
|
ax-mp |
|- CCfld e. Grp |
20 |
1 4
|
grpsubf |
|- ( CCfld e. Grp -> ( -g ` CCfld ) : ( CC X. CC ) --> CC ) |
21 |
|
ffn |
|- ( ( -g ` CCfld ) : ( CC X. CC ) --> CC -> ( -g ` CCfld ) Fn ( CC X. CC ) ) |
22 |
19 20 21
|
mp2b |
|- ( -g ` CCfld ) Fn ( CC X. CC ) |
23 |
|
fnov |
|- ( ( -g ` CCfld ) Fn ( CC X. CC ) <-> ( -g ` CCfld ) = ( x e. CC , y e. CC |-> ( x ( -g ` CCfld ) y ) ) ) |
24 |
22 23
|
mpbi |
|- ( -g ` CCfld ) = ( x e. CC , y e. CC |-> ( x ( -g ` CCfld ) y ) ) |
25 |
11 16 24
|
3eqtr4i |
|- - = ( -g ` CCfld ) |