Description: The complex numbers form a topological group under addition, with the standard topology induced by the absolute value metric. (Contributed by Mario Carneiro, 2-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | cnfldtgp | |- CCfld e. TopGrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnring | |- CCfld e. Ring |
|
2 | ringgrp | |- ( CCfld e. Ring -> CCfld e. Grp ) |
|
3 | 1 2 | ax-mp | |- CCfld e. Grp |
4 | cnfldtps | |- CCfld e. TopSp |
|
5 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
6 | 5 | subcn | |- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
7 | cnfldsub | |- - = ( -g ` CCfld ) |
|
8 | 5 7 | istgp2 | |- ( CCfld e. TopGrp <-> ( CCfld e. Grp /\ CCfld e. TopSp /\ - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) ) |
9 | 3 4 6 8 | mpbir3an | |- CCfld e. TopGrp |