Metamath Proof Explorer


Theorem cnfldtop

Description: The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypothesis cnfldtopn.1
|- J = ( TopOpen ` CCfld )
Assertion cnfldtop
|- J e. Top

Proof

Step Hyp Ref Expression
1 cnfldtopn.1
 |-  J = ( TopOpen ` CCfld )
2 1 cnfldtopon
 |-  J e. ( TopOn ` CC )
3 2 topontopi
 |-  J e. Top