Step |
Hyp |
Ref |
Expression |
1 |
|
cnfldtopn.1 |
|- J = ( TopOpen ` CCfld ) |
2 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
3 |
|
eqid |
|- ( MetOpen ` ( abs o. - ) ) = ( MetOpen ` ( abs o. - ) ) |
4 |
3
|
mopntopon |
|- ( ( abs o. - ) e. ( *Met ` CC ) -> ( MetOpen ` ( abs o. - ) ) e. ( TopOn ` CC ) ) |
5 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
6 |
|
cnfldtset |
|- ( MetOpen ` ( abs o. - ) ) = ( TopSet ` CCfld ) |
7 |
5 6
|
topontopn |
|- ( ( MetOpen ` ( abs o. - ) ) e. ( TopOn ` CC ) -> ( MetOpen ` ( abs o. - ) ) = ( TopOpen ` CCfld ) ) |
8 |
2 4 7
|
mp2b |
|- ( MetOpen ` ( abs o. - ) ) = ( TopOpen ` CCfld ) |
9 |
1 8
|
eqtr4i |
|- J = ( MetOpen ` ( abs o. - ) ) |