Metamath Proof Explorer


Theorem cnfldtopon

Description: The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypothesis cnfldtopn.1
|- J = ( TopOpen ` CCfld )
Assertion cnfldtopon
|- J e. ( TopOn ` CC )

Proof

Step Hyp Ref Expression
1 cnfldtopn.1
 |-  J = ( TopOpen ` CCfld )
2 cnfldtps
 |-  CCfld e. TopSp
3 cnfldbas
 |-  CC = ( Base ` CCfld )
4 3 1 istps
 |-  ( CCfld e. TopSp <-> J e. ( TopOn ` CC ) )
5 2 4 mpbi
 |-  J e. ( TopOn ` CC )