Step |
Hyp |
Ref |
Expression |
1 |
|
cnflduss.1 |
|- U = ( UnifSt ` CCfld ) |
2 |
|
0cn |
|- 0 e. CC |
3 |
2
|
ne0ii |
|- CC =/= (/) |
4 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
5 |
|
xmetpsmet |
|- ( ( abs o. - ) e. ( *Met ` CC ) -> ( abs o. - ) e. ( PsMet ` CC ) ) |
6 |
4 5
|
ax-mp |
|- ( abs o. - ) e. ( PsMet ` CC ) |
7 |
|
metuust |
|- ( ( CC =/= (/) /\ ( abs o. - ) e. ( PsMet ` CC ) ) -> ( metUnif ` ( abs o. - ) ) e. ( UnifOn ` CC ) ) |
8 |
3 6 7
|
mp2an |
|- ( metUnif ` ( abs o. - ) ) e. ( UnifOn ` CC ) |
9 |
|
ustuni |
|- ( ( metUnif ` ( abs o. - ) ) e. ( UnifOn ` CC ) -> U. ( metUnif ` ( abs o. - ) ) = ( CC X. CC ) ) |
10 |
8 9
|
ax-mp |
|- U. ( metUnif ` ( abs o. - ) ) = ( CC X. CC ) |
11 |
10
|
eqcomi |
|- ( CC X. CC ) = U. ( metUnif ` ( abs o. - ) ) |
12 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
13 |
|
cnfldunif |
|- ( metUnif ` ( abs o. - ) ) = ( UnifSet ` CCfld ) |
14 |
12 13
|
ussid |
|- ( ( CC X. CC ) = U. ( metUnif ` ( abs o. - ) ) -> ( metUnif ` ( abs o. - ) ) = ( UnifSt ` CCfld ) ) |
15 |
11 14
|
ax-mp |
|- ( metUnif ` ( abs o. - ) ) = ( UnifSt ` CCfld ) |
16 |
1 15
|
eqtr4i |
|- U = ( metUnif ` ( abs o. - ) ) |