| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnflduss.1 |
|- U = ( UnifSt ` CCfld ) |
| 2 |
|
0cn |
|- 0 e. CC |
| 3 |
2
|
ne0ii |
|- CC =/= (/) |
| 4 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
| 5 |
|
xmetpsmet |
|- ( ( abs o. - ) e. ( *Met ` CC ) -> ( abs o. - ) e. ( PsMet ` CC ) ) |
| 6 |
4 5
|
ax-mp |
|- ( abs o. - ) e. ( PsMet ` CC ) |
| 7 |
|
metuust |
|- ( ( CC =/= (/) /\ ( abs o. - ) e. ( PsMet ` CC ) ) -> ( metUnif ` ( abs o. - ) ) e. ( UnifOn ` CC ) ) |
| 8 |
3 6 7
|
mp2an |
|- ( metUnif ` ( abs o. - ) ) e. ( UnifOn ` CC ) |
| 9 |
|
ustuni |
|- ( ( metUnif ` ( abs o. - ) ) e. ( UnifOn ` CC ) -> U. ( metUnif ` ( abs o. - ) ) = ( CC X. CC ) ) |
| 10 |
8 9
|
ax-mp |
|- U. ( metUnif ` ( abs o. - ) ) = ( CC X. CC ) |
| 11 |
10
|
eqcomi |
|- ( CC X. CC ) = U. ( metUnif ` ( abs o. - ) ) |
| 12 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 13 |
|
cnfldunif |
|- ( metUnif ` ( abs o. - ) ) = ( UnifSet ` CCfld ) |
| 14 |
12 13
|
ussid |
|- ( ( CC X. CC ) = U. ( metUnif ` ( abs o. - ) ) -> ( metUnif ` ( abs o. - ) ) = ( UnifSt ` CCfld ) ) |
| 15 |
11 14
|
ax-mp |
|- ( metUnif ` ( abs o. - ) ) = ( UnifSt ` CCfld ) |
| 16 |
1 15
|
eqtr4i |
|- U = ( metUnif ` ( abs o. - ) ) |