| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnheibor.2 |  |-  J = ( TopOpen ` CCfld ) | 
						
							| 2 |  | cnheibor.3 |  |-  T = ( J |`t X ) | 
						
							| 3 | 1 | cnfldhaus |  |-  J e. Haus | 
						
							| 4 |  | simpl |  |-  ( ( X C_ CC /\ T e. Comp ) -> X C_ CC ) | 
						
							| 5 |  | simpr |  |-  ( ( X C_ CC /\ T e. Comp ) -> T e. Comp ) | 
						
							| 6 | 2 5 | eqeltrrid |  |-  ( ( X C_ CC /\ T e. Comp ) -> ( J |`t X ) e. Comp ) | 
						
							| 7 | 1 | cnfldtopon |  |-  J e. ( TopOn ` CC ) | 
						
							| 8 | 7 | toponunii |  |-  CC = U. J | 
						
							| 9 | 8 | hauscmp |  |-  ( ( J e. Haus /\ X C_ CC /\ ( J |`t X ) e. Comp ) -> X e. ( Clsd ` J ) ) | 
						
							| 10 | 3 4 6 9 | mp3an2i |  |-  ( ( X C_ CC /\ T e. Comp ) -> X e. ( Clsd ` J ) ) | 
						
							| 11 | 1 | cnfldtop |  |-  J e. Top | 
						
							| 12 | 8 | restuni |  |-  ( ( J e. Top /\ X C_ CC ) -> X = U. ( J |`t X ) ) | 
						
							| 13 | 11 4 12 | sylancr |  |-  ( ( X C_ CC /\ T e. Comp ) -> X = U. ( J |`t X ) ) | 
						
							| 14 | 2 | unieqi |  |-  U. T = U. ( J |`t X ) | 
						
							| 15 | 13 14 | eqtr4di |  |-  ( ( X C_ CC /\ T e. Comp ) -> X = U. T ) | 
						
							| 16 | 15 | eleq2d |  |-  ( ( X C_ CC /\ T e. Comp ) -> ( x e. X <-> x e. U. T ) ) | 
						
							| 17 | 16 | biimpar |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. U. T ) -> x e. X ) | 
						
							| 18 |  | cnex |  |-  CC e. _V | 
						
							| 19 |  | ssexg |  |-  ( ( X C_ CC /\ CC e. _V ) -> X e. _V ) | 
						
							| 20 | 4 18 19 | sylancl |  |-  ( ( X C_ CC /\ T e. Comp ) -> X e. _V ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. X ) -> X e. _V ) | 
						
							| 22 |  | cnxmet |  |-  ( abs o. - ) e. ( *Met ` CC ) | 
						
							| 23 |  | 0cnd |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. X ) -> 0 e. CC ) | 
						
							| 24 | 4 | sselda |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. X ) -> x e. CC ) | 
						
							| 25 | 24 | abscld |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. X ) -> ( abs ` x ) e. RR ) | 
						
							| 26 |  | peano2re |  |-  ( ( abs ` x ) e. RR -> ( ( abs ` x ) + 1 ) e. RR ) | 
						
							| 27 | 25 26 | syl |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. X ) -> ( ( abs ` x ) + 1 ) e. RR ) | 
						
							| 28 | 27 | rexrd |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. X ) -> ( ( abs ` x ) + 1 ) e. RR* ) | 
						
							| 29 | 1 | cnfldtopn |  |-  J = ( MetOpen ` ( abs o. - ) ) | 
						
							| 30 | 29 | blopn |  |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ ( ( abs ` x ) + 1 ) e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) e. J ) | 
						
							| 31 | 22 23 28 30 | mp3an2i |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. X ) -> ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) e. J ) | 
						
							| 32 |  | elrestr |  |-  ( ( J e. Top /\ X e. _V /\ ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) e. J ) -> ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) e. ( J |`t X ) ) | 
						
							| 33 | 11 21 31 32 | mp3an2i |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. X ) -> ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) e. ( J |`t X ) ) | 
						
							| 34 | 33 2 | eleqtrrdi |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. X ) -> ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) e. T ) | 
						
							| 35 |  | 0cn |  |-  0 e. CC | 
						
							| 36 |  | eqid |  |-  ( abs o. - ) = ( abs o. - ) | 
						
							| 37 | 36 | cnmetdval |  |-  ( ( 0 e. CC /\ x e. CC ) -> ( 0 ( abs o. - ) x ) = ( abs ` ( 0 - x ) ) ) | 
						
							| 38 | 35 37 | mpan |  |-  ( x e. CC -> ( 0 ( abs o. - ) x ) = ( abs ` ( 0 - x ) ) ) | 
						
							| 39 |  | df-neg |  |-  -u x = ( 0 - x ) | 
						
							| 40 | 39 | fveq2i |  |-  ( abs ` -u x ) = ( abs ` ( 0 - x ) ) | 
						
							| 41 |  | absneg |  |-  ( x e. CC -> ( abs ` -u x ) = ( abs ` x ) ) | 
						
							| 42 | 40 41 | eqtr3id |  |-  ( x e. CC -> ( abs ` ( 0 - x ) ) = ( abs ` x ) ) | 
						
							| 43 | 38 42 | eqtrd |  |-  ( x e. CC -> ( 0 ( abs o. - ) x ) = ( abs ` x ) ) | 
						
							| 44 | 24 43 | syl |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. X ) -> ( 0 ( abs o. - ) x ) = ( abs ` x ) ) | 
						
							| 45 | 25 | ltp1d |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. X ) -> ( abs ` x ) < ( ( abs ` x ) + 1 ) ) | 
						
							| 46 | 44 45 | eqbrtrd |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. X ) -> ( 0 ( abs o. - ) x ) < ( ( abs ` x ) + 1 ) ) | 
						
							| 47 |  | elbl |  |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ ( ( abs ` x ) + 1 ) e. RR* ) -> ( x e. ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) <-> ( x e. CC /\ ( 0 ( abs o. - ) x ) < ( ( abs ` x ) + 1 ) ) ) ) | 
						
							| 48 | 22 23 28 47 | mp3an2i |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. X ) -> ( x e. ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) <-> ( x e. CC /\ ( 0 ( abs o. - ) x ) < ( ( abs ` x ) + 1 ) ) ) ) | 
						
							| 49 | 24 46 48 | mpbir2and |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. X ) -> x e. ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) ) | 
						
							| 50 |  | simpr |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. X ) -> x e. X ) | 
						
							| 51 | 49 50 | elind |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. X ) -> x e. ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) ) | 
						
							| 52 | 24 | absge0d |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. X ) -> 0 <_ ( abs ` x ) ) | 
						
							| 53 | 25 52 | ge0p1rpd |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. X ) -> ( ( abs ` x ) + 1 ) e. RR+ ) | 
						
							| 54 |  | eqid |  |-  ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) = ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) | 
						
							| 55 |  | oveq2 |  |-  ( r = ( ( abs ` x ) + 1 ) -> ( 0 ( ball ` ( abs o. - ) ) r ) = ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) ) | 
						
							| 56 | 55 | ineq1d |  |-  ( r = ( ( abs ` x ) + 1 ) -> ( ( 0 ( ball ` ( abs o. - ) ) r ) i^i X ) = ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) ) | 
						
							| 57 | 56 | rspceeqv |  |-  ( ( ( ( abs ` x ) + 1 ) e. RR+ /\ ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) = ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) ) -> E. r e. RR+ ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) = ( ( 0 ( ball ` ( abs o. - ) ) r ) i^i X ) ) | 
						
							| 58 | 53 54 57 | sylancl |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. X ) -> E. r e. RR+ ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) = ( ( 0 ( ball ` ( abs o. - ) ) r ) i^i X ) ) | 
						
							| 59 |  | eleq2 |  |-  ( u = ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) -> ( x e. u <-> x e. ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) ) ) | 
						
							| 60 |  | eqeq1 |  |-  ( u = ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) -> ( u = ( ( 0 ( ball ` ( abs o. - ) ) r ) i^i X ) <-> ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) = ( ( 0 ( ball ` ( abs o. - ) ) r ) i^i X ) ) ) | 
						
							| 61 | 60 | rexbidv |  |-  ( u = ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) -> ( E. r e. RR+ u = ( ( 0 ( ball ` ( abs o. - ) ) r ) i^i X ) <-> E. r e. RR+ ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) = ( ( 0 ( ball ` ( abs o. - ) ) r ) i^i X ) ) ) | 
						
							| 62 | 59 61 | anbi12d |  |-  ( u = ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) -> ( ( x e. u /\ E. r e. RR+ u = ( ( 0 ( ball ` ( abs o. - ) ) r ) i^i X ) ) <-> ( x e. ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) /\ E. r e. RR+ ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) = ( ( 0 ( ball ` ( abs o. - ) ) r ) i^i X ) ) ) ) | 
						
							| 63 | 62 | rspcev |  |-  ( ( ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) e. T /\ ( x e. ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) /\ E. r e. RR+ ( ( 0 ( ball ` ( abs o. - ) ) ( ( abs ` x ) + 1 ) ) i^i X ) = ( ( 0 ( ball ` ( abs o. - ) ) r ) i^i X ) ) ) -> E. u e. T ( x e. u /\ E. r e. RR+ u = ( ( 0 ( ball ` ( abs o. - ) ) r ) i^i X ) ) ) | 
						
							| 64 | 34 51 58 63 | syl12anc |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. X ) -> E. u e. T ( x e. u /\ E. r e. RR+ u = ( ( 0 ( ball ` ( abs o. - ) ) r ) i^i X ) ) ) | 
						
							| 65 | 17 64 | syldan |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ x e. U. T ) -> E. u e. T ( x e. u /\ E. r e. RR+ u = ( ( 0 ( ball ` ( abs o. - ) ) r ) i^i X ) ) ) | 
						
							| 66 | 65 | ralrimiva |  |-  ( ( X C_ CC /\ T e. Comp ) -> A. x e. U. T E. u e. T ( x e. u /\ E. r e. RR+ u = ( ( 0 ( ball ` ( abs o. - ) ) r ) i^i X ) ) ) | 
						
							| 67 |  | eqid |  |-  U. T = U. T | 
						
							| 68 |  | oveq2 |  |-  ( r = ( f ` u ) -> ( 0 ( ball ` ( abs o. - ) ) r ) = ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) ) | 
						
							| 69 | 68 | ineq1d |  |-  ( r = ( f ` u ) -> ( ( 0 ( ball ` ( abs o. - ) ) r ) i^i X ) = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) | 
						
							| 70 | 69 | eqeq2d |  |-  ( r = ( f ` u ) -> ( u = ( ( 0 ( ball ` ( abs o. - ) ) r ) i^i X ) <-> u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) | 
						
							| 71 | 67 70 | cmpcovf |  |-  ( ( T e. Comp /\ A. x e. U. T E. u e. T ( x e. u /\ E. r e. RR+ u = ( ( 0 ( ball ` ( abs o. - ) ) r ) i^i X ) ) ) -> E. s e. ( ~P T i^i Fin ) ( U. T = U. s /\ E. f ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) ) | 
						
							| 72 | 5 66 71 | syl2anc |  |-  ( ( X C_ CC /\ T e. Comp ) -> E. s e. ( ~P T i^i Fin ) ( U. T = U. s /\ E. f ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) ) | 
						
							| 73 | 15 | ad4antr |  |-  ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) -> X = U. T ) | 
						
							| 74 |  | simpllr |  |-  ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) -> U. T = U. s ) | 
						
							| 75 | 73 74 | eqtrd |  |-  ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) -> X = U. s ) | 
						
							| 76 | 75 | eleq2d |  |-  ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) -> ( x e. X <-> x e. U. s ) ) | 
						
							| 77 |  | eluni2 |  |-  ( x e. U. s <-> E. z e. s x e. z ) | 
						
							| 78 | 76 77 | bitrdi |  |-  ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) -> ( x e. X <-> E. z e. s x e. z ) ) | 
						
							| 79 |  | elssuni |  |-  ( z e. s -> z C_ U. s ) | 
						
							| 80 | 79 | ad2antrl |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> z C_ U. s ) | 
						
							| 81 | 75 | adantr |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> X = U. s ) | 
						
							| 82 | 80 81 | sseqtrrd |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> z C_ X ) | 
						
							| 83 |  | simp-6l |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> X C_ CC ) | 
						
							| 84 | 82 83 | sstrd |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> z C_ CC ) | 
						
							| 85 |  | simprr |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> x e. z ) | 
						
							| 86 | 84 85 | sseldd |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> x e. CC ) | 
						
							| 87 | 86 | abscld |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> ( abs ` x ) e. RR ) | 
						
							| 88 |  | simplrl |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> r e. RR ) | 
						
							| 89 |  | simprl |  |-  ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) -> f : s --> RR+ ) | 
						
							| 90 | 89 | ad2antrr |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> f : s --> RR+ ) | 
						
							| 91 |  | simprl |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> z e. s ) | 
						
							| 92 | 90 91 | ffvelcdmd |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> ( f ` z ) e. RR+ ) | 
						
							| 93 | 92 | rpred |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> ( f ` z ) e. RR ) | 
						
							| 94 | 86 43 | syl |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> ( 0 ( abs o. - ) x ) = ( abs ` x ) ) | 
						
							| 95 |  | id |  |-  ( u = z -> u = z ) | 
						
							| 96 |  | fveq2 |  |-  ( u = z -> ( f ` u ) = ( f ` z ) ) | 
						
							| 97 | 96 | oveq2d |  |-  ( u = z -> ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) = ( 0 ( ball ` ( abs o. - ) ) ( f ` z ) ) ) | 
						
							| 98 | 97 | ineq1d |  |-  ( u = z -> ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` z ) ) i^i X ) ) | 
						
							| 99 | 95 98 | eqeq12d |  |-  ( u = z -> ( u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) <-> z = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` z ) ) i^i X ) ) ) | 
						
							| 100 |  | simprr |  |-  ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) -> A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) | 
						
							| 101 | 100 | ad2antrr |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) | 
						
							| 102 | 99 101 91 | rspcdva |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> z = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` z ) ) i^i X ) ) | 
						
							| 103 | 85 102 | eleqtrd |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> x e. ( ( 0 ( ball ` ( abs o. - ) ) ( f ` z ) ) i^i X ) ) | 
						
							| 104 | 103 | elin1d |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> x e. ( 0 ( ball ` ( abs o. - ) ) ( f ` z ) ) ) | 
						
							| 105 |  | 0cnd |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> 0 e. CC ) | 
						
							| 106 | 92 | rpxrd |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> ( f ` z ) e. RR* ) | 
						
							| 107 |  | elbl |  |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ ( f ` z ) e. RR* ) -> ( x e. ( 0 ( ball ` ( abs o. - ) ) ( f ` z ) ) <-> ( x e. CC /\ ( 0 ( abs o. - ) x ) < ( f ` z ) ) ) ) | 
						
							| 108 | 22 105 106 107 | mp3an2i |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> ( x e. ( 0 ( ball ` ( abs o. - ) ) ( f ` z ) ) <-> ( x e. CC /\ ( 0 ( abs o. - ) x ) < ( f ` z ) ) ) ) | 
						
							| 109 | 104 108 | mpbid |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> ( x e. CC /\ ( 0 ( abs o. - ) x ) < ( f ` z ) ) ) | 
						
							| 110 | 109 | simprd |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> ( 0 ( abs o. - ) x ) < ( f ` z ) ) | 
						
							| 111 | 94 110 | eqbrtrrd |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> ( abs ` x ) < ( f ` z ) ) | 
						
							| 112 | 96 | breq1d |  |-  ( u = z -> ( ( f ` u ) <_ r <-> ( f ` z ) <_ r ) ) | 
						
							| 113 |  | simplrr |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> A. u e. s ( f ` u ) <_ r ) | 
						
							| 114 | 112 113 91 | rspcdva |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> ( f ` z ) <_ r ) | 
						
							| 115 | 87 93 88 111 114 | ltletrd |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> ( abs ` x ) < r ) | 
						
							| 116 | 87 88 115 | ltled |  |-  ( ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) /\ ( z e. s /\ x e. z ) ) -> ( abs ` x ) <_ r ) | 
						
							| 117 | 116 | rexlimdvaa |  |-  ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) -> ( E. z e. s x e. z -> ( abs ` x ) <_ r ) ) | 
						
							| 118 | 78 117 | sylbid |  |-  ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) -> ( x e. X -> ( abs ` x ) <_ r ) ) | 
						
							| 119 | 118 | ralrimiv |  |-  ( ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) /\ ( r e. RR /\ A. u e. s ( f ` u ) <_ r ) ) -> A. x e. X ( abs ` x ) <_ r ) | 
						
							| 120 |  | simpllr |  |-  ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) -> s e. ( ~P T i^i Fin ) ) | 
						
							| 121 | 120 | elin2d |  |-  ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) -> s e. Fin ) | 
						
							| 122 |  | ffvelcdm |  |-  ( ( f : s --> RR+ /\ u e. s ) -> ( f ` u ) e. RR+ ) | 
						
							| 123 | 122 | rpred |  |-  ( ( f : s --> RR+ /\ u e. s ) -> ( f ` u ) e. RR ) | 
						
							| 124 | 123 | ralrimiva |  |-  ( f : s --> RR+ -> A. u e. s ( f ` u ) e. RR ) | 
						
							| 125 | 124 | ad2antrl |  |-  ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) -> A. u e. s ( f ` u ) e. RR ) | 
						
							| 126 |  | fimaxre3 |  |-  ( ( s e. Fin /\ A. u e. s ( f ` u ) e. RR ) -> E. r e. RR A. u e. s ( f ` u ) <_ r ) | 
						
							| 127 | 121 125 126 | syl2anc |  |-  ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) -> E. r e. RR A. u e. s ( f ` u ) <_ r ) | 
						
							| 128 | 119 127 | reximddv |  |-  ( ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) /\ ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) -> E. r e. RR A. x e. X ( abs ` x ) <_ r ) | 
						
							| 129 | 128 | ex |  |-  ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) -> ( ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) -> E. r e. RR A. x e. X ( abs ` x ) <_ r ) ) | 
						
							| 130 | 129 | exlimdv |  |-  ( ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) /\ U. T = U. s ) -> ( E. f ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) -> E. r e. RR A. x e. X ( abs ` x ) <_ r ) ) | 
						
							| 131 | 130 | expimpd |  |-  ( ( ( X C_ CC /\ T e. Comp ) /\ s e. ( ~P T i^i Fin ) ) -> ( ( U. T = U. s /\ E. f ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) -> E. r e. RR A. x e. X ( abs ` x ) <_ r ) ) | 
						
							| 132 | 131 | rexlimdva |  |-  ( ( X C_ CC /\ T e. Comp ) -> ( E. s e. ( ~P T i^i Fin ) ( U. T = U. s /\ E. f ( f : s --> RR+ /\ A. u e. s u = ( ( 0 ( ball ` ( abs o. - ) ) ( f ` u ) ) i^i X ) ) ) -> E. r e. RR A. x e. X ( abs ` x ) <_ r ) ) | 
						
							| 133 | 72 132 | mpd |  |-  ( ( X C_ CC /\ T e. Comp ) -> E. r e. RR A. x e. X ( abs ` x ) <_ r ) | 
						
							| 134 | 10 133 | jca |  |-  ( ( X C_ CC /\ T e. Comp ) -> ( X e. ( Clsd ` J ) /\ E. r e. RR A. x e. X ( abs ` x ) <_ r ) ) | 
						
							| 135 |  | eqid |  |-  ( y e. RR , z e. RR |-> ( y + ( _i x. z ) ) ) = ( y e. RR , z e. RR |-> ( y + ( _i x. z ) ) ) | 
						
							| 136 |  | eqid |  |-  ( ( y e. RR , z e. RR |-> ( y + ( _i x. z ) ) ) " ( ( -u r [,] r ) X. ( -u r [,] r ) ) ) = ( ( y e. RR , z e. RR |-> ( y + ( _i x. z ) ) ) " ( ( -u r [,] r ) X. ( -u r [,] r ) ) ) | 
						
							| 137 | 1 2 135 136 | cnheiborlem |  |-  ( ( X e. ( Clsd ` J ) /\ ( r e. RR /\ A. x e. X ( abs ` x ) <_ r ) ) -> T e. Comp ) | 
						
							| 138 | 137 | rexlimdvaa |  |-  ( X e. ( Clsd ` J ) -> ( E. r e. RR A. x e. X ( abs ` x ) <_ r -> T e. Comp ) ) | 
						
							| 139 | 138 | imp |  |-  ( ( X e. ( Clsd ` J ) /\ E. r e. RR A. x e. X ( abs ` x ) <_ r ) -> T e. Comp ) | 
						
							| 140 | 139 | adantl |  |-  ( ( X C_ CC /\ ( X e. ( Clsd ` J ) /\ E. r e. RR A. x e. X ( abs ` x ) <_ r ) ) -> T e. Comp ) | 
						
							| 141 | 134 140 | impbida |  |-  ( X C_ CC -> ( T e. Comp <-> ( X e. ( Clsd ` J ) /\ E. r e. RR A. x e. X ( abs ` x ) <_ r ) ) ) |