| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnheibor.2 |
|- J = ( TopOpen ` CCfld ) |
| 2 |
|
cnheibor.3 |
|- T = ( J |`t X ) |
| 3 |
|
cnheibor.4 |
|- F = ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) |
| 4 |
|
cnheibor.5 |
|- Y = ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) |
| 5 |
1
|
cnfldtop |
|- J e. Top |
| 6 |
3
|
cnref1o |
|- F : ( RR X. RR ) -1-1-onto-> CC |
| 7 |
|
f1ofn |
|- ( F : ( RR X. RR ) -1-1-onto-> CC -> F Fn ( RR X. RR ) ) |
| 8 |
|
elpreima |
|- ( F Fn ( RR X. RR ) -> ( u e. ( `' F " X ) <-> ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) ) |
| 9 |
6 7 8
|
mp2b |
|- ( u e. ( `' F " X ) <-> ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) |
| 10 |
|
1st2nd2 |
|- ( u e. ( RR X. RR ) -> u = <. ( 1st ` u ) , ( 2nd ` u ) >. ) |
| 11 |
10
|
ad2antrl |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> u = <. ( 1st ` u ) , ( 2nd ` u ) >. ) |
| 12 |
|
xp1st |
|- ( u e. ( RR X. RR ) -> ( 1st ` u ) e. RR ) |
| 13 |
12
|
ad2antrl |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 1st ` u ) e. RR ) |
| 14 |
13
|
recnd |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 1st ` u ) e. CC ) |
| 15 |
14
|
abscld |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( 1st ` u ) ) e. RR ) |
| 16 |
1
|
cnfldtopon |
|- J e. ( TopOn ` CC ) |
| 17 |
16
|
toponunii |
|- CC = U. J |
| 18 |
17
|
cldss |
|- ( X e. ( Clsd ` J ) -> X C_ CC ) |
| 19 |
18
|
adantr |
|- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> X C_ CC ) |
| 20 |
19
|
adantr |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> X C_ CC ) |
| 21 |
|
simprr |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( F ` u ) e. X ) |
| 22 |
20 21
|
sseldd |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( F ` u ) e. CC ) |
| 23 |
22
|
abscld |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( F ` u ) ) e. RR ) |
| 24 |
|
simplrl |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> R e. RR ) |
| 25 |
|
simprl |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> u e. ( RR X. RR ) ) |
| 26 |
|
f1ocnvfv1 |
|- ( ( F : ( RR X. RR ) -1-1-onto-> CC /\ u e. ( RR X. RR ) ) -> ( `' F ` ( F ` u ) ) = u ) |
| 27 |
6 25 26
|
sylancr |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( `' F ` ( F ` u ) ) = u ) |
| 28 |
|
fveq2 |
|- ( z = ( F ` u ) -> ( Re ` z ) = ( Re ` ( F ` u ) ) ) |
| 29 |
|
fveq2 |
|- ( z = ( F ` u ) -> ( Im ` z ) = ( Im ` ( F ` u ) ) ) |
| 30 |
28 29
|
opeq12d |
|- ( z = ( F ` u ) -> <. ( Re ` z ) , ( Im ` z ) >. = <. ( Re ` ( F ` u ) ) , ( Im ` ( F ` u ) ) >. ) |
| 31 |
3
|
cnrecnv |
|- `' F = ( z e. CC |-> <. ( Re ` z ) , ( Im ` z ) >. ) |
| 32 |
|
opex |
|- <. ( Re ` ( F ` u ) ) , ( Im ` ( F ` u ) ) >. e. _V |
| 33 |
30 31 32
|
fvmpt |
|- ( ( F ` u ) e. CC -> ( `' F ` ( F ` u ) ) = <. ( Re ` ( F ` u ) ) , ( Im ` ( F ` u ) ) >. ) |
| 34 |
22 33
|
syl |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( `' F ` ( F ` u ) ) = <. ( Re ` ( F ` u ) ) , ( Im ` ( F ` u ) ) >. ) |
| 35 |
27 34
|
eqtr3d |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> u = <. ( Re ` ( F ` u ) ) , ( Im ` ( F ` u ) ) >. ) |
| 36 |
35
|
fveq2d |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 1st ` u ) = ( 1st ` <. ( Re ` ( F ` u ) ) , ( Im ` ( F ` u ) ) >. ) ) |
| 37 |
|
fvex |
|- ( Re ` ( F ` u ) ) e. _V |
| 38 |
|
fvex |
|- ( Im ` ( F ` u ) ) e. _V |
| 39 |
37 38
|
op1st |
|- ( 1st ` <. ( Re ` ( F ` u ) ) , ( Im ` ( F ` u ) ) >. ) = ( Re ` ( F ` u ) ) |
| 40 |
36 39
|
eqtrdi |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 1st ` u ) = ( Re ` ( F ` u ) ) ) |
| 41 |
40
|
fveq2d |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( 1st ` u ) ) = ( abs ` ( Re ` ( F ` u ) ) ) ) |
| 42 |
|
absrele |
|- ( ( F ` u ) e. CC -> ( abs ` ( Re ` ( F ` u ) ) ) <_ ( abs ` ( F ` u ) ) ) |
| 43 |
22 42
|
syl |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( Re ` ( F ` u ) ) ) <_ ( abs ` ( F ` u ) ) ) |
| 44 |
41 43
|
eqbrtrd |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( 1st ` u ) ) <_ ( abs ` ( F ` u ) ) ) |
| 45 |
|
fveq2 |
|- ( z = ( F ` u ) -> ( abs ` z ) = ( abs ` ( F ` u ) ) ) |
| 46 |
45
|
breq1d |
|- ( z = ( F ` u ) -> ( ( abs ` z ) <_ R <-> ( abs ` ( F ` u ) ) <_ R ) ) |
| 47 |
|
simplrr |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> A. z e. X ( abs ` z ) <_ R ) |
| 48 |
46 47 21
|
rspcdva |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( F ` u ) ) <_ R ) |
| 49 |
15 23 24 44 48
|
letrd |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( 1st ` u ) ) <_ R ) |
| 50 |
13 24
|
absled |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( ( abs ` ( 1st ` u ) ) <_ R <-> ( -u R <_ ( 1st ` u ) /\ ( 1st ` u ) <_ R ) ) ) |
| 51 |
49 50
|
mpbid |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( -u R <_ ( 1st ` u ) /\ ( 1st ` u ) <_ R ) ) |
| 52 |
51
|
simpld |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> -u R <_ ( 1st ` u ) ) |
| 53 |
51
|
simprd |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 1st ` u ) <_ R ) |
| 54 |
|
renegcl |
|- ( R e. RR -> -u R e. RR ) |
| 55 |
24 54
|
syl |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> -u R e. RR ) |
| 56 |
|
elicc2 |
|- ( ( -u R e. RR /\ R e. RR ) -> ( ( 1st ` u ) e. ( -u R [,] R ) <-> ( ( 1st ` u ) e. RR /\ -u R <_ ( 1st ` u ) /\ ( 1st ` u ) <_ R ) ) ) |
| 57 |
55 24 56
|
syl2anc |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( ( 1st ` u ) e. ( -u R [,] R ) <-> ( ( 1st ` u ) e. RR /\ -u R <_ ( 1st ` u ) /\ ( 1st ` u ) <_ R ) ) ) |
| 58 |
13 52 53 57
|
mpbir3and |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 1st ` u ) e. ( -u R [,] R ) ) |
| 59 |
|
xp2nd |
|- ( u e. ( RR X. RR ) -> ( 2nd ` u ) e. RR ) |
| 60 |
59
|
ad2antrl |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 2nd ` u ) e. RR ) |
| 61 |
60
|
recnd |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 2nd ` u ) e. CC ) |
| 62 |
61
|
abscld |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( 2nd ` u ) ) e. RR ) |
| 63 |
35
|
fveq2d |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 2nd ` u ) = ( 2nd ` <. ( Re ` ( F ` u ) ) , ( Im ` ( F ` u ) ) >. ) ) |
| 64 |
37 38
|
op2nd |
|- ( 2nd ` <. ( Re ` ( F ` u ) ) , ( Im ` ( F ` u ) ) >. ) = ( Im ` ( F ` u ) ) |
| 65 |
63 64
|
eqtrdi |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 2nd ` u ) = ( Im ` ( F ` u ) ) ) |
| 66 |
65
|
fveq2d |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( 2nd ` u ) ) = ( abs ` ( Im ` ( F ` u ) ) ) ) |
| 67 |
|
absimle |
|- ( ( F ` u ) e. CC -> ( abs ` ( Im ` ( F ` u ) ) ) <_ ( abs ` ( F ` u ) ) ) |
| 68 |
22 67
|
syl |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( Im ` ( F ` u ) ) ) <_ ( abs ` ( F ` u ) ) ) |
| 69 |
66 68
|
eqbrtrd |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( 2nd ` u ) ) <_ ( abs ` ( F ` u ) ) ) |
| 70 |
62 23 24 69 48
|
letrd |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( 2nd ` u ) ) <_ R ) |
| 71 |
60 24
|
absled |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( ( abs ` ( 2nd ` u ) ) <_ R <-> ( -u R <_ ( 2nd ` u ) /\ ( 2nd ` u ) <_ R ) ) ) |
| 72 |
70 71
|
mpbid |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( -u R <_ ( 2nd ` u ) /\ ( 2nd ` u ) <_ R ) ) |
| 73 |
72
|
simpld |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> -u R <_ ( 2nd ` u ) ) |
| 74 |
72
|
simprd |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 2nd ` u ) <_ R ) |
| 75 |
|
elicc2 |
|- ( ( -u R e. RR /\ R e. RR ) -> ( ( 2nd ` u ) e. ( -u R [,] R ) <-> ( ( 2nd ` u ) e. RR /\ -u R <_ ( 2nd ` u ) /\ ( 2nd ` u ) <_ R ) ) ) |
| 76 |
55 24 75
|
syl2anc |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( ( 2nd ` u ) e. ( -u R [,] R ) <-> ( ( 2nd ` u ) e. RR /\ -u R <_ ( 2nd ` u ) /\ ( 2nd ` u ) <_ R ) ) ) |
| 77 |
60 73 74 76
|
mpbir3and |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 2nd ` u ) e. ( -u R [,] R ) ) |
| 78 |
58 77
|
opelxpd |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> <. ( 1st ` u ) , ( 2nd ` u ) >. e. ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) |
| 79 |
11 78
|
eqeltrd |
|- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> u e. ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) |
| 80 |
79
|
ex |
|- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> ( ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) -> u e. ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) ) |
| 81 |
9 80
|
biimtrid |
|- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> ( u e. ( `' F " X ) -> u e. ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) ) |
| 82 |
81
|
ssrdv |
|- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> ( `' F " X ) C_ ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) |
| 83 |
|
f1ofun |
|- ( F : ( RR X. RR ) -1-1-onto-> CC -> Fun F ) |
| 84 |
6 83
|
ax-mp |
|- Fun F |
| 85 |
|
f1ofo |
|- ( F : ( RR X. RR ) -1-1-onto-> CC -> F : ( RR X. RR ) -onto-> CC ) |
| 86 |
|
forn |
|- ( F : ( RR X. RR ) -onto-> CC -> ran F = CC ) |
| 87 |
6 85 86
|
mp2b |
|- ran F = CC |
| 88 |
19 87
|
sseqtrrdi |
|- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> X C_ ran F ) |
| 89 |
|
funimass1 |
|- ( ( Fun F /\ X C_ ran F ) -> ( ( `' F " X ) C_ ( ( -u R [,] R ) X. ( -u R [,] R ) ) -> X C_ ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) ) ) |
| 90 |
84 88 89
|
sylancr |
|- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> ( ( `' F " X ) C_ ( ( -u R [,] R ) X. ( -u R [,] R ) ) -> X C_ ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) ) ) |
| 91 |
82 90
|
mpd |
|- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> X C_ ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) ) |
| 92 |
91 4
|
sseqtrrdi |
|- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> X C_ Y ) |
| 93 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
| 94 |
3 93 1
|
cnrehmeo |
|- F e. ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) Homeo J ) |
| 95 |
|
imaexg |
|- ( F e. ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) Homeo J ) -> ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) e. _V ) |
| 96 |
94 95
|
ax-mp |
|- ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) e. _V |
| 97 |
4 96
|
eqeltri |
|- Y e. _V |
| 98 |
97
|
a1i |
|- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> Y e. _V ) |
| 99 |
|
restabs |
|- ( ( J e. Top /\ X C_ Y /\ Y e. _V ) -> ( ( J |`t Y ) |`t X ) = ( J |`t X ) ) |
| 100 |
5 92 98 99
|
mp3an2i |
|- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> ( ( J |`t Y ) |`t X ) = ( J |`t X ) ) |
| 101 |
100 2
|
eqtr4di |
|- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> ( ( J |`t Y ) |`t X ) = T ) |
| 102 |
4
|
oveq2i |
|- ( J |`t Y ) = ( J |`t ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) ) |
| 103 |
|
ishmeo |
|- ( F e. ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) Homeo J ) <-> ( F e. ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) Cn J ) /\ `' F e. ( J Cn ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) ) ) ) |
| 104 |
94 103
|
mpbi |
|- ( F e. ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) Cn J ) /\ `' F e. ( J Cn ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) ) ) |
| 105 |
104
|
simpli |
|- F e. ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) Cn J ) |
| 106 |
|
iccssre |
|- ( ( -u R e. RR /\ R e. RR ) -> ( -u R [,] R ) C_ RR ) |
| 107 |
54 106
|
mpancom |
|- ( R e. RR -> ( -u R [,] R ) C_ RR ) |
| 108 |
1 93
|
rerest |
|- ( ( -u R [,] R ) C_ RR -> ( J |`t ( -u R [,] R ) ) = ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) ) |
| 109 |
107 108
|
syl |
|- ( R e. RR -> ( J |`t ( -u R [,] R ) ) = ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) ) |
| 110 |
109 109
|
oveq12d |
|- ( R e. RR -> ( ( J |`t ( -u R [,] R ) ) tX ( J |`t ( -u R [,] R ) ) ) = ( ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) tX ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) ) ) |
| 111 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 112 |
|
ovex |
|- ( -u R [,] R ) e. _V |
| 113 |
|
txrest |
|- ( ( ( ( topGen ` ran (,) ) e. Top /\ ( topGen ` ran (,) ) e. Top ) /\ ( ( -u R [,] R ) e. _V /\ ( -u R [,] R ) e. _V ) ) -> ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) |`t ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) = ( ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) tX ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) ) ) |
| 114 |
111 111 112 112 113
|
mp4an |
|- ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) |`t ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) = ( ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) tX ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) ) |
| 115 |
110 114
|
eqtr4di |
|- ( R e. RR -> ( ( J |`t ( -u R [,] R ) ) tX ( J |`t ( -u R [,] R ) ) ) = ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) |`t ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) ) |
| 116 |
|
eqid |
|- ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) = ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) |
| 117 |
93 116
|
icccmp |
|- ( ( -u R e. RR /\ R e. RR ) -> ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) e. Comp ) |
| 118 |
54 117
|
mpancom |
|- ( R e. RR -> ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) e. Comp ) |
| 119 |
109 118
|
eqeltrd |
|- ( R e. RR -> ( J |`t ( -u R [,] R ) ) e. Comp ) |
| 120 |
|
txcmp |
|- ( ( ( J |`t ( -u R [,] R ) ) e. Comp /\ ( J |`t ( -u R [,] R ) ) e. Comp ) -> ( ( J |`t ( -u R [,] R ) ) tX ( J |`t ( -u R [,] R ) ) ) e. Comp ) |
| 121 |
119 119 120
|
syl2anc |
|- ( R e. RR -> ( ( J |`t ( -u R [,] R ) ) tX ( J |`t ( -u R [,] R ) ) ) e. Comp ) |
| 122 |
115 121
|
eqeltrrd |
|- ( R e. RR -> ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) |`t ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) e. Comp ) |
| 123 |
|
imacmp |
|- ( ( F e. ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) Cn J ) /\ ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) |`t ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) e. Comp ) -> ( J |`t ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) ) e. Comp ) |
| 124 |
105 122 123
|
sylancr |
|- ( R e. RR -> ( J |`t ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) ) e. Comp ) |
| 125 |
102 124
|
eqeltrid |
|- ( R e. RR -> ( J |`t Y ) e. Comp ) |
| 126 |
125
|
ad2antrl |
|- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> ( J |`t Y ) e. Comp ) |
| 127 |
|
imassrn |
|- ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) C_ ran F |
| 128 |
4 127
|
eqsstri |
|- Y C_ ran F |
| 129 |
|
f1of |
|- ( F : ( RR X. RR ) -1-1-onto-> CC -> F : ( RR X. RR ) --> CC ) |
| 130 |
|
frn |
|- ( F : ( RR X. RR ) --> CC -> ran F C_ CC ) |
| 131 |
6 129 130
|
mp2b |
|- ran F C_ CC |
| 132 |
128 131
|
sstri |
|- Y C_ CC |
| 133 |
|
simpl |
|- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> X e. ( Clsd ` J ) ) |
| 134 |
17
|
restcldi |
|- ( ( Y C_ CC /\ X e. ( Clsd ` J ) /\ X C_ Y ) -> X e. ( Clsd ` ( J |`t Y ) ) ) |
| 135 |
132 133 92 134
|
mp3an2i |
|- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> X e. ( Clsd ` ( J |`t Y ) ) ) |
| 136 |
|
cmpcld |
|- ( ( ( J |`t Y ) e. Comp /\ X e. ( Clsd ` ( J |`t Y ) ) ) -> ( ( J |`t Y ) |`t X ) e. Comp ) |
| 137 |
126 135 136
|
syl2anc |
|- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> ( ( J |`t Y ) |`t X ) e. Comp ) |
| 138 |
101 137
|
eqeltrrd |
|- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> T e. Comp ) |