| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnaddabloOLD |  |-  + e. AbelOp | 
						
							| 2 |  | ablogrpo |  |-  ( + e. AbelOp -> + e. GrpOp ) | 
						
							| 3 | 1 2 | ax-mp |  |-  + e. GrpOp | 
						
							| 4 |  | ax-addf |  |-  + : ( CC X. CC ) --> CC | 
						
							| 5 | 4 | fdmi |  |-  dom + = ( CC X. CC ) | 
						
							| 6 | 3 5 | grporn |  |-  CC = ran + | 
						
							| 7 |  | eqid |  |-  ( GId ` + ) = ( GId ` + ) | 
						
							| 8 | 6 7 | grpoidval |  |-  ( + e. GrpOp -> ( GId ` + ) = ( iota_ y e. CC A. x e. CC ( y + x ) = x ) ) | 
						
							| 9 | 3 8 | ax-mp |  |-  ( GId ` + ) = ( iota_ y e. CC A. x e. CC ( y + x ) = x ) | 
						
							| 10 |  | addlid |  |-  ( x e. CC -> ( 0 + x ) = x ) | 
						
							| 11 | 10 | rgen |  |-  A. x e. CC ( 0 + x ) = x | 
						
							| 12 |  | 0cn |  |-  0 e. CC | 
						
							| 13 | 6 | grpoideu |  |-  ( + e. GrpOp -> E! y e. CC A. x e. CC ( y + x ) = x ) | 
						
							| 14 | 3 13 | ax-mp |  |-  E! y e. CC A. x e. CC ( y + x ) = x | 
						
							| 15 |  | oveq1 |  |-  ( y = 0 -> ( y + x ) = ( 0 + x ) ) | 
						
							| 16 | 15 | eqeq1d |  |-  ( y = 0 -> ( ( y + x ) = x <-> ( 0 + x ) = x ) ) | 
						
							| 17 | 16 | ralbidv |  |-  ( y = 0 -> ( A. x e. CC ( y + x ) = x <-> A. x e. CC ( 0 + x ) = x ) ) | 
						
							| 18 | 17 | riota2 |  |-  ( ( 0 e. CC /\ E! y e. CC A. x e. CC ( y + x ) = x ) -> ( A. x e. CC ( 0 + x ) = x <-> ( iota_ y e. CC A. x e. CC ( y + x ) = x ) = 0 ) ) | 
						
							| 19 | 12 14 18 | mp2an |  |-  ( A. x e. CC ( 0 + x ) = x <-> ( iota_ y e. CC A. x e. CC ( y + x ) = x ) = 0 ) | 
						
							| 20 | 11 19 | mpbi |  |-  ( iota_ y e. CC A. x e. CC ( y + x ) = x ) = 0 | 
						
							| 21 | 9 20 | eqtr2i |  |-  0 = ( GId ` + ) |