Step |
Hyp |
Ref |
Expression |
1 |
|
cnaddabloOLD |
|- + e. AbelOp |
2 |
|
ablogrpo |
|- ( + e. AbelOp -> + e. GrpOp ) |
3 |
1 2
|
ax-mp |
|- + e. GrpOp |
4 |
|
ax-addf |
|- + : ( CC X. CC ) --> CC |
5 |
4
|
fdmi |
|- dom + = ( CC X. CC ) |
6 |
3 5
|
grporn |
|- CC = ran + |
7 |
|
eqid |
|- ( GId ` + ) = ( GId ` + ) |
8 |
6 7
|
grpoidval |
|- ( + e. GrpOp -> ( GId ` + ) = ( iota_ y e. CC A. x e. CC ( y + x ) = x ) ) |
9 |
3 8
|
ax-mp |
|- ( GId ` + ) = ( iota_ y e. CC A. x e. CC ( y + x ) = x ) |
10 |
|
addid2 |
|- ( x e. CC -> ( 0 + x ) = x ) |
11 |
10
|
rgen |
|- A. x e. CC ( 0 + x ) = x |
12 |
|
0cn |
|- 0 e. CC |
13 |
6
|
grpoideu |
|- ( + e. GrpOp -> E! y e. CC A. x e. CC ( y + x ) = x ) |
14 |
3 13
|
ax-mp |
|- E! y e. CC A. x e. CC ( y + x ) = x |
15 |
|
oveq1 |
|- ( y = 0 -> ( y + x ) = ( 0 + x ) ) |
16 |
15
|
eqeq1d |
|- ( y = 0 -> ( ( y + x ) = x <-> ( 0 + x ) = x ) ) |
17 |
16
|
ralbidv |
|- ( y = 0 -> ( A. x e. CC ( y + x ) = x <-> A. x e. CC ( 0 + x ) = x ) ) |
18 |
17
|
riota2 |
|- ( ( 0 e. CC /\ E! y e. CC A. x e. CC ( y + x ) = x ) -> ( A. x e. CC ( 0 + x ) = x <-> ( iota_ y e. CC A. x e. CC ( y + x ) = x ) = 0 ) ) |
19 |
12 14 18
|
mp2an |
|- ( A. x e. CC ( 0 + x ) = x <-> ( iota_ y e. CC A. x e. CC ( y + x ) = x ) = 0 ) |
20 |
11 19
|
mpbi |
|- ( iota_ y e. CC A. x e. CC ( y + x ) = x ) = 0 |
21 |
9 20
|
eqtr2i |
|- 0 = ( GId ` + ) |