Step |
Hyp |
Ref |
Expression |
1 |
|
elpri |
|- ( x e. { (/) , A } -> ( x = (/) \/ x = A ) ) |
2 |
|
topontop |
|- ( J e. ( TopOn ` X ) -> J e. Top ) |
3 |
2
|
ad2antrr |
|- ( ( ( J e. ( TopOn ` X ) /\ A e. V ) /\ f : X --> A ) -> J e. Top ) |
4 |
|
0opn |
|- ( J e. Top -> (/) e. J ) |
5 |
3 4
|
syl |
|- ( ( ( J e. ( TopOn ` X ) /\ A e. V ) /\ f : X --> A ) -> (/) e. J ) |
6 |
|
imaeq2 |
|- ( x = (/) -> ( `' f " x ) = ( `' f " (/) ) ) |
7 |
|
ima0 |
|- ( `' f " (/) ) = (/) |
8 |
6 7
|
eqtrdi |
|- ( x = (/) -> ( `' f " x ) = (/) ) |
9 |
8
|
eleq1d |
|- ( x = (/) -> ( ( `' f " x ) e. J <-> (/) e. J ) ) |
10 |
5 9
|
syl5ibrcom |
|- ( ( ( J e. ( TopOn ` X ) /\ A e. V ) /\ f : X --> A ) -> ( x = (/) -> ( `' f " x ) e. J ) ) |
11 |
|
fimacnv |
|- ( f : X --> A -> ( `' f " A ) = X ) |
12 |
11
|
adantl |
|- ( ( ( J e. ( TopOn ` X ) /\ A e. V ) /\ f : X --> A ) -> ( `' f " A ) = X ) |
13 |
|
toponmax |
|- ( J e. ( TopOn ` X ) -> X e. J ) |
14 |
13
|
ad2antrr |
|- ( ( ( J e. ( TopOn ` X ) /\ A e. V ) /\ f : X --> A ) -> X e. J ) |
15 |
12 14
|
eqeltrd |
|- ( ( ( J e. ( TopOn ` X ) /\ A e. V ) /\ f : X --> A ) -> ( `' f " A ) e. J ) |
16 |
|
imaeq2 |
|- ( x = A -> ( `' f " x ) = ( `' f " A ) ) |
17 |
16
|
eleq1d |
|- ( x = A -> ( ( `' f " x ) e. J <-> ( `' f " A ) e. J ) ) |
18 |
15 17
|
syl5ibrcom |
|- ( ( ( J e. ( TopOn ` X ) /\ A e. V ) /\ f : X --> A ) -> ( x = A -> ( `' f " x ) e. J ) ) |
19 |
10 18
|
jaod |
|- ( ( ( J e. ( TopOn ` X ) /\ A e. V ) /\ f : X --> A ) -> ( ( x = (/) \/ x = A ) -> ( `' f " x ) e. J ) ) |
20 |
1 19
|
syl5 |
|- ( ( ( J e. ( TopOn ` X ) /\ A e. V ) /\ f : X --> A ) -> ( x e. { (/) , A } -> ( `' f " x ) e. J ) ) |
21 |
20
|
ralrimiv |
|- ( ( ( J e. ( TopOn ` X ) /\ A e. V ) /\ f : X --> A ) -> A. x e. { (/) , A } ( `' f " x ) e. J ) |
22 |
21
|
ex |
|- ( ( J e. ( TopOn ` X ) /\ A e. V ) -> ( f : X --> A -> A. x e. { (/) , A } ( `' f " x ) e. J ) ) |
23 |
22
|
pm4.71d |
|- ( ( J e. ( TopOn ` X ) /\ A e. V ) -> ( f : X --> A <-> ( f : X --> A /\ A. x e. { (/) , A } ( `' f " x ) e. J ) ) ) |
24 |
|
id |
|- ( A e. V -> A e. V ) |
25 |
|
elmapg |
|- ( ( A e. V /\ X e. J ) -> ( f e. ( A ^m X ) <-> f : X --> A ) ) |
26 |
24 13 25
|
syl2anr |
|- ( ( J e. ( TopOn ` X ) /\ A e. V ) -> ( f e. ( A ^m X ) <-> f : X --> A ) ) |
27 |
|
indistopon |
|- ( A e. V -> { (/) , A } e. ( TopOn ` A ) ) |
28 |
|
iscn |
|- ( ( J e. ( TopOn ` X ) /\ { (/) , A } e. ( TopOn ` A ) ) -> ( f e. ( J Cn { (/) , A } ) <-> ( f : X --> A /\ A. x e. { (/) , A } ( `' f " x ) e. J ) ) ) |
29 |
27 28
|
sylan2 |
|- ( ( J e. ( TopOn ` X ) /\ A e. V ) -> ( f e. ( J Cn { (/) , A } ) <-> ( f : X --> A /\ A. x e. { (/) , A } ( `' f " x ) e. J ) ) ) |
30 |
23 26 29
|
3bitr4rd |
|- ( ( J e. ( TopOn ` X ) /\ A e. V ) -> ( f e. ( J Cn { (/) , A } ) <-> f e. ( A ^m X ) ) ) |
31 |
30
|
eqrdv |
|- ( ( J e. ( TopOn ` X ) /\ A e. V ) -> ( J Cn { (/) , A } ) = ( A ^m X ) ) |