Step |
Hyp |
Ref |
Expression |
1 |
|
ssid |
|- CC C_ CC |
2 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
3 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t A ) = ( ( TopOpen ` CCfld ) |`t A ) |
4 |
2
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
5 |
4
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
6 |
2 3 5
|
cncfcn |
|- ( ( A C_ CC /\ CC C_ CC ) -> ( A -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) ) |
7 |
1 6
|
mpan2 |
|- ( A C_ CC -> ( A -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) ) |
8 |
7
|
eleq2d |
|- ( A C_ CC -> ( F e. ( A -cn-> CC ) <-> F e. ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) ) ) |
9 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ A C_ CC ) -> ( ( TopOpen ` CCfld ) |`t A ) e. ( TopOn ` A ) ) |
10 |
4 9
|
mpan |
|- ( A C_ CC -> ( ( TopOpen ` CCfld ) |`t A ) e. ( TopOn ` A ) ) |
11 |
|
cncnp |
|- ( ( ( ( TopOpen ` CCfld ) |`t A ) e. ( TopOn ` A ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( F e. ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) <-> ( F : A --> CC /\ A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) |
12 |
10 4 11
|
sylancl |
|- ( A C_ CC -> ( F e. ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) <-> ( F : A --> CC /\ A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) |
13 |
2 3
|
cnplimc |
|- ( ( A C_ CC /\ x e. A ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> ( F : A --> CC /\ ( F ` x ) e. ( F limCC x ) ) ) ) |
14 |
13
|
baibd |
|- ( ( ( A C_ CC /\ x e. A ) /\ F : A --> CC ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> ( F ` x ) e. ( F limCC x ) ) ) |
15 |
14
|
an32s |
|- ( ( ( A C_ CC /\ F : A --> CC ) /\ x e. A ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> ( F ` x ) e. ( F limCC x ) ) ) |
16 |
15
|
ralbidva |
|- ( ( A C_ CC /\ F : A --> CC ) -> ( A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> A. x e. A ( F ` x ) e. ( F limCC x ) ) ) |
17 |
16
|
pm5.32da |
|- ( A C_ CC -> ( ( F : A --> CC /\ A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) <-> ( F : A --> CC /\ A. x e. A ( F ` x ) e. ( F limCC x ) ) ) ) |
18 |
8 12 17
|
3bitrd |
|- ( A C_ CC -> ( F e. ( A -cn-> CC ) <-> ( F : A --> CC /\ A. x e. A ( F ` x ) e. ( F limCC x ) ) ) ) |