| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssid |  |-  CC C_ CC | 
						
							| 2 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 3 |  | eqid |  |-  ( ( TopOpen ` CCfld ) |`t A ) = ( ( TopOpen ` CCfld ) |`t A ) | 
						
							| 4 | 2 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 5 | 4 | toponrestid |  |-  ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) | 
						
							| 6 | 2 3 5 | cncfcn |  |-  ( ( A C_ CC /\ CC C_ CC ) -> ( A -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 7 | 1 6 | mpan2 |  |-  ( A C_ CC -> ( A -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 8 | 7 | eleq2d |  |-  ( A C_ CC -> ( F e. ( A -cn-> CC ) <-> F e. ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) ) ) | 
						
							| 9 |  | resttopon |  |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ A C_ CC ) -> ( ( TopOpen ` CCfld ) |`t A ) e. ( TopOn ` A ) ) | 
						
							| 10 | 4 9 | mpan |  |-  ( A C_ CC -> ( ( TopOpen ` CCfld ) |`t A ) e. ( TopOn ` A ) ) | 
						
							| 11 |  | cncnp |  |-  ( ( ( ( TopOpen ` CCfld ) |`t A ) e. ( TopOn ` A ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( F e. ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) <-> ( F : A --> CC /\ A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) | 
						
							| 12 | 10 4 11 | sylancl |  |-  ( A C_ CC -> ( F e. ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) <-> ( F : A --> CC /\ A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) | 
						
							| 13 | 2 3 | cnplimc |  |-  ( ( A C_ CC /\ x e. A ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> ( F : A --> CC /\ ( F ` x ) e. ( F limCC x ) ) ) ) | 
						
							| 14 | 13 | baibd |  |-  ( ( ( A C_ CC /\ x e. A ) /\ F : A --> CC ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> ( F ` x ) e. ( F limCC x ) ) ) | 
						
							| 15 | 14 | an32s |  |-  ( ( ( A C_ CC /\ F : A --> CC ) /\ x e. A ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> ( F ` x ) e. ( F limCC x ) ) ) | 
						
							| 16 | 15 | ralbidva |  |-  ( ( A C_ CC /\ F : A --> CC ) -> ( A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> A. x e. A ( F ` x ) e. ( F limCC x ) ) ) | 
						
							| 17 | 16 | pm5.32da |  |-  ( A C_ CC -> ( ( F : A --> CC /\ A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) <-> ( F : A --> CC /\ A. x e. A ( F ` x ) e. ( F limCC x ) ) ) ) | 
						
							| 18 | 8 12 17 | 3bitrd |  |-  ( A C_ CC -> ( F e. ( A -cn-> CC ) <-> ( F : A --> CC /\ A. x e. A ( F ` x ) e. ( F limCC x ) ) ) ) |