| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnlimci.f |
|- ( ph -> F e. ( A -cn-> D ) ) |
| 2 |
|
cnlimci.c |
|- ( ph -> B e. A ) |
| 3 |
|
fveq2 |
|- ( x = B -> ( F ` x ) = ( F ` B ) ) |
| 4 |
|
oveq2 |
|- ( x = B -> ( F limCC x ) = ( F limCC B ) ) |
| 5 |
3 4
|
eleq12d |
|- ( x = B -> ( ( F ` x ) e. ( F limCC x ) <-> ( F ` B ) e. ( F limCC B ) ) ) |
| 6 |
|
cncfrss |
|- ( F e. ( A -cn-> D ) -> A C_ CC ) |
| 7 |
1 6
|
syl |
|- ( ph -> A C_ CC ) |
| 8 |
|
cncfrss2 |
|- ( F e. ( A -cn-> D ) -> D C_ CC ) |
| 9 |
1 8
|
syl |
|- ( ph -> D C_ CC ) |
| 10 |
|
ssid |
|- CC C_ CC |
| 11 |
|
cncfss |
|- ( ( D C_ CC /\ CC C_ CC ) -> ( A -cn-> D ) C_ ( A -cn-> CC ) ) |
| 12 |
9 10 11
|
sylancl |
|- ( ph -> ( A -cn-> D ) C_ ( A -cn-> CC ) ) |
| 13 |
12 1
|
sseldd |
|- ( ph -> F e. ( A -cn-> CC ) ) |
| 14 |
|
cnlimc |
|- ( A C_ CC -> ( F e. ( A -cn-> CC ) <-> ( F : A --> CC /\ A. x e. A ( F ` x ) e. ( F limCC x ) ) ) ) |
| 15 |
14
|
simplbda |
|- ( ( A C_ CC /\ F e. ( A -cn-> CC ) ) -> A. x e. A ( F ` x ) e. ( F limCC x ) ) |
| 16 |
7 13 15
|
syl2anc |
|- ( ph -> A. x e. A ( F ` x ) e. ( F limCC x ) ) |
| 17 |
5 16 2
|
rspcdva |
|- ( ph -> ( F ` B ) e. ( F limCC B ) ) |