Step |
Hyp |
Ref |
Expression |
1 |
|
cnlimci.f |
|- ( ph -> F e. ( A -cn-> D ) ) |
2 |
|
cnlimci.c |
|- ( ph -> B e. A ) |
3 |
|
fveq2 |
|- ( x = B -> ( F ` x ) = ( F ` B ) ) |
4 |
|
oveq2 |
|- ( x = B -> ( F limCC x ) = ( F limCC B ) ) |
5 |
3 4
|
eleq12d |
|- ( x = B -> ( ( F ` x ) e. ( F limCC x ) <-> ( F ` B ) e. ( F limCC B ) ) ) |
6 |
|
cncfrss |
|- ( F e. ( A -cn-> D ) -> A C_ CC ) |
7 |
1 6
|
syl |
|- ( ph -> A C_ CC ) |
8 |
|
cncfrss2 |
|- ( F e. ( A -cn-> D ) -> D C_ CC ) |
9 |
1 8
|
syl |
|- ( ph -> D C_ CC ) |
10 |
|
ssid |
|- CC C_ CC |
11 |
|
cncfss |
|- ( ( D C_ CC /\ CC C_ CC ) -> ( A -cn-> D ) C_ ( A -cn-> CC ) ) |
12 |
9 10 11
|
sylancl |
|- ( ph -> ( A -cn-> D ) C_ ( A -cn-> CC ) ) |
13 |
12 1
|
sseldd |
|- ( ph -> F e. ( A -cn-> CC ) ) |
14 |
|
cnlimc |
|- ( A C_ CC -> ( F e. ( A -cn-> CC ) <-> ( F : A --> CC /\ A. x e. A ( F ` x ) e. ( F limCC x ) ) ) ) |
15 |
14
|
simplbda |
|- ( ( A C_ CC /\ F e. ( A -cn-> CC ) ) -> A. x e. A ( F ` x ) e. ( F limCC x ) ) |
16 |
7 13 15
|
syl2anc |
|- ( ph -> A. x e. A ( F ` x ) e. ( F limCC x ) ) |
17 |
5 16 2
|
rspcdva |
|- ( ph -> ( F ` B ) e. ( F limCC B ) ) |