Step |
Hyp |
Ref |
Expression |
1 |
|
cnlmod.w |
|- W = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } u. { <. ( Scalar ` ndx ) , CCfld >. , <. ( .s ` ndx ) , x. >. } ) |
2 |
|
0cn |
|- 0 e. CC |
3 |
1
|
cnlmodlem1 |
|- ( Base ` W ) = CC |
4 |
3
|
eqcomi |
|- CC = ( Base ` W ) |
5 |
4
|
a1i |
|- ( 0 e. CC -> CC = ( Base ` W ) ) |
6 |
1
|
cnlmodlem2 |
|- ( +g ` W ) = + |
7 |
6
|
eqcomi |
|- + = ( +g ` W ) |
8 |
7
|
a1i |
|- ( 0 e. CC -> + = ( +g ` W ) ) |
9 |
|
addcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
10 |
9
|
3adant1 |
|- ( ( 0 e. CC /\ x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
11 |
|
addass |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) |
12 |
11
|
adantl |
|- ( ( 0 e. CC /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) |
13 |
|
id |
|- ( 0 e. CC -> 0 e. CC ) |
14 |
|
addid2 |
|- ( x e. CC -> ( 0 + x ) = x ) |
15 |
14
|
adantl |
|- ( ( 0 e. CC /\ x e. CC ) -> ( 0 + x ) = x ) |
16 |
|
negcl |
|- ( x e. CC -> -u x e. CC ) |
17 |
16
|
adantl |
|- ( ( 0 e. CC /\ x e. CC ) -> -u x e. CC ) |
18 |
|
id |
|- ( x e. CC -> x e. CC ) |
19 |
16 18
|
addcomd |
|- ( x e. CC -> ( -u x + x ) = ( x + -u x ) ) |
20 |
19
|
adantl |
|- ( ( 0 e. CC /\ x e. CC ) -> ( -u x + x ) = ( x + -u x ) ) |
21 |
|
negid |
|- ( x e. CC -> ( x + -u x ) = 0 ) |
22 |
21
|
adantl |
|- ( ( 0 e. CC /\ x e. CC ) -> ( x + -u x ) = 0 ) |
23 |
20 22
|
eqtrd |
|- ( ( 0 e. CC /\ x e. CC ) -> ( -u x + x ) = 0 ) |
24 |
5 8 10 12 13 15 17 23
|
isgrpd |
|- ( 0 e. CC -> W e. Grp ) |
25 |
4
|
a1i |
|- ( W e. Grp -> CC = ( Base ` W ) ) |
26 |
7
|
a1i |
|- ( W e. Grp -> + = ( +g ` W ) ) |
27 |
1
|
cnlmodlem3 |
|- ( Scalar ` W ) = CCfld |
28 |
27
|
eqcomi |
|- CCfld = ( Scalar ` W ) |
29 |
28
|
a1i |
|- ( W e. Grp -> CCfld = ( Scalar ` W ) ) |
30 |
1
|
cnlmod4 |
|- ( .s ` W ) = x. |
31 |
30
|
eqcomi |
|- x. = ( .s ` W ) |
32 |
31
|
a1i |
|- ( W e. Grp -> x. = ( .s ` W ) ) |
33 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
34 |
33
|
a1i |
|- ( W e. Grp -> CC = ( Base ` CCfld ) ) |
35 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
36 |
35
|
a1i |
|- ( W e. Grp -> + = ( +g ` CCfld ) ) |
37 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
38 |
37
|
a1i |
|- ( W e. Grp -> x. = ( .r ` CCfld ) ) |
39 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
40 |
39
|
a1i |
|- ( W e. Grp -> 1 = ( 1r ` CCfld ) ) |
41 |
|
cnring |
|- CCfld e. Ring |
42 |
41
|
a1i |
|- ( W e. Grp -> CCfld e. Ring ) |
43 |
|
id |
|- ( W e. Grp -> W e. Grp ) |
44 |
|
mulcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
45 |
44
|
3adant1 |
|- ( ( W e. Grp /\ x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
46 |
|
adddi |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) ) |
47 |
46
|
adantl |
|- ( ( W e. Grp /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) ) |
48 |
|
adddir |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) |
49 |
48
|
adantl |
|- ( ( W e. Grp /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) |
50 |
|
mulass |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) |
51 |
50
|
adantl |
|- ( ( W e. Grp /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) |
52 |
|
mulid2 |
|- ( x e. CC -> ( 1 x. x ) = x ) |
53 |
52
|
adantl |
|- ( ( W e. Grp /\ x e. CC ) -> ( 1 x. x ) = x ) |
54 |
25 26 29 32 34 36 38 40 42 43 45 47 49 51 53
|
islmodd |
|- ( W e. Grp -> W e. LMod ) |
55 |
2 24 54
|
mp2b |
|- W e. LMod |