Description: Lemma 3 for cnlmod . (Contributed by AV, 20-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cnlmod.w | |- W = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } u. { <. ( Scalar ` ndx ) , CCfld >. , <. ( .s ` ndx ) , x. >. } ) |
|
Assertion | cnlmodlem3 | |- ( Scalar ` W ) = CCfld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnlmod.w | |- W = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } u. { <. ( Scalar ` ndx ) , CCfld >. , <. ( .s ` ndx ) , x. >. } ) |
|
2 | cnfldex | |- CCfld e. _V |
|
3 | qdass | |- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } u. { <. ( Scalar ` ndx ) , CCfld >. , <. ( .s ` ndx ) , x. >. } ) = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( Scalar ` ndx ) , CCfld >. } u. { <. ( .s ` ndx ) , x. >. } ) |
|
4 | 1 3 | eqtri | |- W = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( Scalar ` ndx ) , CCfld >. } u. { <. ( .s ` ndx ) , x. >. } ) |
5 | 4 | lmodsca | |- ( CCfld e. _V -> CCfld = ( Scalar ` W ) ) |
6 | 5 | eqcomd | |- ( CCfld e. _V -> ( Scalar ` W ) = CCfld ) |
7 | 2 6 | ax-mp | |- ( Scalar ` W ) = CCfld |