Metamath Proof Explorer


Theorem cnlmodlem3

Description: Lemma 3 for cnlmod . (Contributed by AV, 20-Sep-2021)

Ref Expression
Hypothesis cnlmod.w
|- W = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } u. { <. ( Scalar ` ndx ) , CCfld >. , <. ( .s ` ndx ) , x. >. } )
Assertion cnlmodlem3
|- ( Scalar ` W ) = CCfld

Proof

Step Hyp Ref Expression
1 cnlmod.w
 |-  W = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } u. { <. ( Scalar ` ndx ) , CCfld >. , <. ( .s ` ndx ) , x. >. } )
2 cnfldex
 |-  CCfld e. _V
3 qdass
 |-  ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } u. { <. ( Scalar ` ndx ) , CCfld >. , <. ( .s ` ndx ) , x. >. } ) = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( Scalar ` ndx ) , CCfld >. } u. { <. ( .s ` ndx ) , x. >. } )
4 1 3 eqtri
 |-  W = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( Scalar ` ndx ) , CCfld >. } u. { <. ( .s ` ndx ) , x. >. } )
5 4 lmodsca
 |-  ( CCfld e. _V -> CCfld = ( Scalar ` W ) )
6 5 eqcomd
 |-  ( CCfld e. _V -> ( Scalar ` W ) = CCfld )
7 2 6 ax-mp
 |-  ( Scalar ` W ) = CCfld