Metamath Proof Explorer


Theorem cnlnadjlem1

Description: Lemma for cnlnadji (Theorem 3.10 of Beran p. 104: every continuous linear operator has an adjoint). The value of the auxiliary functional G . (Contributed by NM, 16-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses cnlnadjlem.1
|- T e. LinOp
cnlnadjlem.2
|- T e. ContOp
cnlnadjlem.3
|- G = ( g e. ~H |-> ( ( T ` g ) .ih y ) )
Assertion cnlnadjlem1
|- ( A e. ~H -> ( G ` A ) = ( ( T ` A ) .ih y ) )

Proof

Step Hyp Ref Expression
1 cnlnadjlem.1
 |-  T e. LinOp
2 cnlnadjlem.2
 |-  T e. ContOp
3 cnlnadjlem.3
 |-  G = ( g e. ~H |-> ( ( T ` g ) .ih y ) )
4 fveq2
 |-  ( g = A -> ( T ` g ) = ( T ` A ) )
5 4 oveq1d
 |-  ( g = A -> ( ( T ` g ) .ih y ) = ( ( T ` A ) .ih y ) )
6 ovex
 |-  ( ( T ` A ) .ih y ) e. _V
7 5 3 6 fvmpt
 |-  ( A e. ~H -> ( G ` A ) = ( ( T ` A ) .ih y ) )