Metamath Proof Explorer


Theorem cnm2m1cnm3

Description: Subtracting 2 and afterwards 1 from a number results in the difference between the number and 3. (Contributed by Alexander van der Vekens, 16-Sep-2018)

Ref Expression
Assertion cnm2m1cnm3
|- ( A e. CC -> ( ( A - 2 ) - 1 ) = ( A - 3 ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( A e. CC -> A e. CC )
2 2cnd
 |-  ( A e. CC -> 2 e. CC )
3 1cnd
 |-  ( A e. CC -> 1 e. CC )
4 1 2 3 subsub4d
 |-  ( A e. CC -> ( ( A - 2 ) - 1 ) = ( A - ( 2 + 1 ) ) )
5 2p1e3
 |-  ( 2 + 1 ) = 3
6 5 a1i
 |-  ( A e. CC -> ( 2 + 1 ) = 3 )
7 6 oveq2d
 |-  ( A e. CC -> ( A - ( 2 + 1 ) ) = ( A - 3 ) )
8 4 7 eqtrd
 |-  ( A e. CC -> ( ( A - 2 ) - 1 ) = ( A - 3 ) )