| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncff |
|- ( F e. ( A -cn-> CC ) -> F : A --> CC ) |
| 2 |
|
mblss |
|- ( A e. dom vol -> A C_ RR ) |
| 3 |
|
cnex |
|- CC e. _V |
| 4 |
|
reex |
|- RR e. _V |
| 5 |
|
elpm2r |
|- ( ( ( CC e. _V /\ RR e. _V ) /\ ( F : A --> CC /\ A C_ RR ) ) -> F e. ( CC ^pm RR ) ) |
| 6 |
3 4 5
|
mpanl12 |
|- ( ( F : A --> CC /\ A C_ RR ) -> F e. ( CC ^pm RR ) ) |
| 7 |
1 2 6
|
syl2anr |
|- ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) -> F e. ( CC ^pm RR ) ) |
| 8 |
|
simpll |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> A e. dom vol ) |
| 9 |
|
simplr |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> F e. ( A -cn-> CC ) ) |
| 10 |
|
recncf |
|- Re e. ( CC -cn-> RR ) |
| 11 |
10
|
a1i |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> Re e. ( CC -cn-> RR ) ) |
| 12 |
9 11
|
cncfco |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( Re o. F ) e. ( A -cn-> RR ) ) |
| 13 |
2
|
ad2antrr |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> A C_ RR ) |
| 14 |
|
ax-resscn |
|- RR C_ CC |
| 15 |
13 14
|
sstrdi |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> A C_ CC ) |
| 16 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 17 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t A ) = ( ( TopOpen ` CCfld ) |`t A ) |
| 18 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 19 |
16 17 18
|
cncfcn |
|- ( ( A C_ CC /\ RR C_ CC ) -> ( A -cn-> RR ) = ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( topGen ` ran (,) ) ) ) |
| 20 |
15 14 19
|
sylancl |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( A -cn-> RR ) = ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( topGen ` ran (,) ) ) ) |
| 21 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
| 22 |
16 21
|
rerest |
|- ( A C_ RR -> ( ( TopOpen ` CCfld ) |`t A ) = ( ( topGen ` ran (,) ) |`t A ) ) |
| 23 |
13 22
|
syl |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( ( TopOpen ` CCfld ) |`t A ) = ( ( topGen ` ran (,) ) |`t A ) ) |
| 24 |
23
|
oveq1d |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( topGen ` ran (,) ) ) = ( ( ( topGen ` ran (,) ) |`t A ) Cn ( topGen ` ran (,) ) ) ) |
| 25 |
20 24
|
eqtrd |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( A -cn-> RR ) = ( ( ( topGen ` ran (,) ) |`t A ) Cn ( topGen ` ran (,) ) ) ) |
| 26 |
12 25
|
eleqtrd |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( Re o. F ) e. ( ( ( topGen ` ran (,) ) |`t A ) Cn ( topGen ` ran (,) ) ) ) |
| 27 |
|
retopbas |
|- ran (,) e. TopBases |
| 28 |
|
bastg |
|- ( ran (,) e. TopBases -> ran (,) C_ ( topGen ` ran (,) ) ) |
| 29 |
27 28
|
ax-mp |
|- ran (,) C_ ( topGen ` ran (,) ) |
| 30 |
|
simpr |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> x e. ran (,) ) |
| 31 |
29 30
|
sselid |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> x e. ( topGen ` ran (,) ) ) |
| 32 |
|
cnima |
|- ( ( ( Re o. F ) e. ( ( ( topGen ` ran (,) ) |`t A ) Cn ( topGen ` ran (,) ) ) /\ x e. ( topGen ` ran (,) ) ) -> ( `' ( Re o. F ) " x ) e. ( ( topGen ` ran (,) ) |`t A ) ) |
| 33 |
26 31 32
|
syl2anc |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( `' ( Re o. F ) " x ) e. ( ( topGen ` ran (,) ) |`t A ) ) |
| 34 |
|
eqid |
|- ( ( topGen ` ran (,) ) |`t A ) = ( ( topGen ` ran (,) ) |`t A ) |
| 35 |
34
|
subopnmbl |
|- ( ( A e. dom vol /\ ( `' ( Re o. F ) " x ) e. ( ( topGen ` ran (,) ) |`t A ) ) -> ( `' ( Re o. F ) " x ) e. dom vol ) |
| 36 |
8 33 35
|
syl2anc |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( `' ( Re o. F ) " x ) e. dom vol ) |
| 37 |
|
imcncf |
|- Im e. ( CC -cn-> RR ) |
| 38 |
37
|
a1i |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> Im e. ( CC -cn-> RR ) ) |
| 39 |
9 38
|
cncfco |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( Im o. F ) e. ( A -cn-> RR ) ) |
| 40 |
39 25
|
eleqtrd |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( Im o. F ) e. ( ( ( topGen ` ran (,) ) |`t A ) Cn ( topGen ` ran (,) ) ) ) |
| 41 |
|
cnima |
|- ( ( ( Im o. F ) e. ( ( ( topGen ` ran (,) ) |`t A ) Cn ( topGen ` ran (,) ) ) /\ x e. ( topGen ` ran (,) ) ) -> ( `' ( Im o. F ) " x ) e. ( ( topGen ` ran (,) ) |`t A ) ) |
| 42 |
40 31 41
|
syl2anc |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( `' ( Im o. F ) " x ) e. ( ( topGen ` ran (,) ) |`t A ) ) |
| 43 |
34
|
subopnmbl |
|- ( ( A e. dom vol /\ ( `' ( Im o. F ) " x ) e. ( ( topGen ` ran (,) ) |`t A ) ) -> ( `' ( Im o. F ) " x ) e. dom vol ) |
| 44 |
8 42 43
|
syl2anc |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( `' ( Im o. F ) " x ) e. dom vol ) |
| 45 |
36 44
|
jca |
|- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) |
| 46 |
45
|
ralrimiva |
|- ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) -> A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) |
| 47 |
|
ismbf1 |
|- ( F e. MblFn <-> ( F e. ( CC ^pm RR ) /\ A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) |
| 48 |
7 46 47
|
sylanbrc |
|- ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) -> F e. MblFn ) |