Description: The unit group of the complex numbers is an abelian group. (Contributed by Mario Carneiro, 21-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cnmgpabl.m | |- M = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
|
Assertion | cnmgpabl | |- M e. Abel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmgpabl.m | |- M = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
|
2 | cncrng | |- CCfld e. CRing |
|
3 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
4 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
5 | cndrng | |- CCfld e. DivRing |
|
6 | 3 4 5 | drngui | |- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
7 | 6 1 | unitabl | |- ( CCfld e. CRing -> M e. Abel ) |
8 | 2 7 | ax-mp | |- M e. Abel |