Metamath Proof Explorer


Theorem cnmgpabl

Description: The unit group of the complex numbers is an abelian group. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Hypothesis cnmgpabl.m
|- M = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) )
Assertion cnmgpabl
|- M e. Abel

Proof

Step Hyp Ref Expression
1 cnmgpabl.m
 |-  M = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) )
2 cncrng
 |-  CCfld e. CRing
3 cnfldbas
 |-  CC = ( Base ` CCfld )
4 cnfld0
 |-  0 = ( 0g ` CCfld )
5 cndrng
 |-  CCfld e. DivRing
6 3 4 5 drngui
 |-  ( CC \ { 0 } ) = ( Unit ` CCfld )
7 6 1 unitabl
 |-  ( CCfld e. CRing -> M e. Abel )
8 2 7 ax-mp
 |-  M e. Abel