Description: The group identity element of nonzero complex number multiplication is one. (Contributed by Steve Rodriguez, 23-Feb-2007) (Revised by AV, 26-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnmgpabl.m | |- M = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) | |
| Assertion | cnmgpid | |- ( 0g ` M ) = 1 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnmgpabl.m |  |-  M = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) | |
| 2 | cnring | |- CCfld e. Ring | |
| 3 | difss |  |-  ( CC \ { 0 } ) C_ CC | |
| 4 | ax-1cn | |- 1 e. CC | |
| 5 | ax-1ne0 | |- 1 =/= 0 | |
| 6 | eldifsn |  |-  ( 1 e. ( CC \ { 0 } ) <-> ( 1 e. CC /\ 1 =/= 0 ) ) | |
| 7 | 4 5 6 | mpbir2an |  |-  1 e. ( CC \ { 0 } ) | 
| 8 | cnfldbas | |- CC = ( Base ` CCfld ) | |
| 9 | cnfld1 | |- 1 = ( 1r ` CCfld ) | |
| 10 | 1 8 9 | ringidss |  |-  ( ( CCfld e. Ring /\ ( CC \ { 0 } ) C_ CC /\ 1 e. ( CC \ { 0 } ) ) -> 1 = ( 0g ` M ) ) | 
| 11 | 10 | eqcomd |  |-  ( ( CCfld e. Ring /\ ( CC \ { 0 } ) C_ CC /\ 1 e. ( CC \ { 0 } ) ) -> ( 0g ` M ) = 1 ) | 
| 12 | 2 3 7 11 | mp3an | |- ( 0g ` M ) = 1 |