Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnmptid.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
cnmpt11.a | |- ( ph -> ( x e. X |-> A ) e. ( J Cn K ) ) |
||
cnmpt1t.b | |- ( ph -> ( x e. X |-> B ) e. ( J Cn L ) ) |
||
cnmpt12f.f | |- ( ph -> F e. ( ( K tX L ) Cn M ) ) |
||
Assertion | cnmpt12f | |- ( ph -> ( x e. X |-> ( A F B ) ) e. ( J Cn M ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptid.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
2 | cnmpt11.a | |- ( ph -> ( x e. X |-> A ) e. ( J Cn K ) ) |
|
3 | cnmpt1t.b | |- ( ph -> ( x e. X |-> B ) e. ( J Cn L ) ) |
|
4 | cnmpt12f.f | |- ( ph -> F e. ( ( K tX L ) Cn M ) ) |
|
5 | df-ov | |- ( A F B ) = ( F ` <. A , B >. ) |
|
6 | 5 | mpteq2i | |- ( x e. X |-> ( A F B ) ) = ( x e. X |-> ( F ` <. A , B >. ) ) |
7 | 1 2 3 | cnmpt1t | |- ( ph -> ( x e. X |-> <. A , B >. ) e. ( J Cn ( K tX L ) ) ) |
8 | 1 7 4 | cnmpt11f | |- ( ph -> ( x e. X |-> ( F ` <. A , B >. ) ) e. ( J Cn M ) ) |
9 | 6 8 | eqeltrid | |- ( ph -> ( x e. X |-> ( A F B ) ) e. ( J Cn M ) ) |