| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnmpt1ds.d |  |-  D = ( dist ` G ) | 
						
							| 2 |  | cnmpt1ds.j |  |-  J = ( TopOpen ` G ) | 
						
							| 3 |  | cnmpt1ds.r |  |-  R = ( topGen ` ran (,) ) | 
						
							| 4 |  | cnmpt1ds.g |  |-  ( ph -> G e. MetSp ) | 
						
							| 5 |  | cnmpt1ds.k |  |-  ( ph -> K e. ( TopOn ` X ) ) | 
						
							| 6 |  | cnmpt1ds.a |  |-  ( ph -> ( x e. X |-> A ) e. ( K Cn J ) ) | 
						
							| 7 |  | cnmpt1ds.b |  |-  ( ph -> ( x e. X |-> B ) e. ( K Cn J ) ) | 
						
							| 8 |  | mstps |  |-  ( G e. MetSp -> G e. TopSp ) | 
						
							| 9 | 4 8 | syl |  |-  ( ph -> G e. TopSp ) | 
						
							| 10 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 11 | 10 2 | istps |  |-  ( G e. TopSp <-> J e. ( TopOn ` ( Base ` G ) ) ) | 
						
							| 12 | 9 11 | sylib |  |-  ( ph -> J e. ( TopOn ` ( Base ` G ) ) ) | 
						
							| 13 |  | cnf2 |  |-  ( ( K e. ( TopOn ` X ) /\ J e. ( TopOn ` ( Base ` G ) ) /\ ( x e. X |-> A ) e. ( K Cn J ) ) -> ( x e. X |-> A ) : X --> ( Base ` G ) ) | 
						
							| 14 | 5 12 6 13 | syl3anc |  |-  ( ph -> ( x e. X |-> A ) : X --> ( Base ` G ) ) | 
						
							| 15 | 14 | fvmptelcdm |  |-  ( ( ph /\ x e. X ) -> A e. ( Base ` G ) ) | 
						
							| 16 |  | cnf2 |  |-  ( ( K e. ( TopOn ` X ) /\ J e. ( TopOn ` ( Base ` G ) ) /\ ( x e. X |-> B ) e. ( K Cn J ) ) -> ( x e. X |-> B ) : X --> ( Base ` G ) ) | 
						
							| 17 | 5 12 7 16 | syl3anc |  |-  ( ph -> ( x e. X |-> B ) : X --> ( Base ` G ) ) | 
						
							| 18 | 17 | fvmptelcdm |  |-  ( ( ph /\ x e. X ) -> B e. ( Base ` G ) ) | 
						
							| 19 | 15 18 | ovresd |  |-  ( ( ph /\ x e. X ) -> ( A ( D |` ( ( Base ` G ) X. ( Base ` G ) ) ) B ) = ( A D B ) ) | 
						
							| 20 | 19 | mpteq2dva |  |-  ( ph -> ( x e. X |-> ( A ( D |` ( ( Base ` G ) X. ( Base ` G ) ) ) B ) ) = ( x e. X |-> ( A D B ) ) ) | 
						
							| 21 | 10 1 2 3 | msdcn |  |-  ( G e. MetSp -> ( D |` ( ( Base ` G ) X. ( Base ` G ) ) ) e. ( ( J tX J ) Cn R ) ) | 
						
							| 22 | 4 21 | syl |  |-  ( ph -> ( D |` ( ( Base ` G ) X. ( Base ` G ) ) ) e. ( ( J tX J ) Cn R ) ) | 
						
							| 23 | 5 6 7 22 | cnmpt12f |  |-  ( ph -> ( x e. X |-> ( A ( D |` ( ( Base ` G ) X. ( Base ` G ) ) ) B ) ) e. ( K Cn R ) ) | 
						
							| 24 | 20 23 | eqeltrrd |  |-  ( ph -> ( x e. X |-> ( A D B ) ) e. ( K Cn R ) ) |