| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnmpt1ip.j |  |-  J = ( TopOpen ` W ) | 
						
							| 2 |  | cnmpt1ip.c |  |-  C = ( TopOpen ` CCfld ) | 
						
							| 3 |  | cnmpt1ip.h |  |-  ., = ( .i ` W ) | 
						
							| 4 |  | cnmpt1ip.r |  |-  ( ph -> W e. CPreHil ) | 
						
							| 5 |  | cnmpt1ip.k |  |-  ( ph -> K e. ( TopOn ` X ) ) | 
						
							| 6 |  | cnmpt1ip.a |  |-  ( ph -> ( x e. X |-> A ) e. ( K Cn J ) ) | 
						
							| 7 |  | cnmpt1ip.b |  |-  ( ph -> ( x e. X |-> B ) e. ( K Cn J ) ) | 
						
							| 8 |  | cphngp |  |-  ( W e. CPreHil -> W e. NrmGrp ) | 
						
							| 9 |  | ngptps |  |-  ( W e. NrmGrp -> W e. TopSp ) | 
						
							| 10 | 4 8 9 | 3syl |  |-  ( ph -> W e. TopSp ) | 
						
							| 11 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 12 | 11 1 | istps |  |-  ( W e. TopSp <-> J e. ( TopOn ` ( Base ` W ) ) ) | 
						
							| 13 | 10 12 | sylib |  |-  ( ph -> J e. ( TopOn ` ( Base ` W ) ) ) | 
						
							| 14 |  | cnf2 |  |-  ( ( K e. ( TopOn ` X ) /\ J e. ( TopOn ` ( Base ` W ) ) /\ ( x e. X |-> A ) e. ( K Cn J ) ) -> ( x e. X |-> A ) : X --> ( Base ` W ) ) | 
						
							| 15 | 5 13 6 14 | syl3anc |  |-  ( ph -> ( x e. X |-> A ) : X --> ( Base ` W ) ) | 
						
							| 16 | 15 | fvmptelcdm |  |-  ( ( ph /\ x e. X ) -> A e. ( Base ` W ) ) | 
						
							| 17 |  | cnf2 |  |-  ( ( K e. ( TopOn ` X ) /\ J e. ( TopOn ` ( Base ` W ) ) /\ ( x e. X |-> B ) e. ( K Cn J ) ) -> ( x e. X |-> B ) : X --> ( Base ` W ) ) | 
						
							| 18 | 5 13 7 17 | syl3anc |  |-  ( ph -> ( x e. X |-> B ) : X --> ( Base ` W ) ) | 
						
							| 19 | 18 | fvmptelcdm |  |-  ( ( ph /\ x e. X ) -> B e. ( Base ` W ) ) | 
						
							| 20 |  | eqid |  |-  ( .if ` W ) = ( .if ` W ) | 
						
							| 21 | 11 3 20 | ipfval |  |-  ( ( A e. ( Base ` W ) /\ B e. ( Base ` W ) ) -> ( A ( .if ` W ) B ) = ( A ., B ) ) | 
						
							| 22 | 16 19 21 | syl2anc |  |-  ( ( ph /\ x e. X ) -> ( A ( .if ` W ) B ) = ( A ., B ) ) | 
						
							| 23 | 22 | mpteq2dva |  |-  ( ph -> ( x e. X |-> ( A ( .if ` W ) B ) ) = ( x e. X |-> ( A ., B ) ) ) | 
						
							| 24 | 20 1 2 | ipcn |  |-  ( W e. CPreHil -> ( .if ` W ) e. ( ( J tX J ) Cn C ) ) | 
						
							| 25 | 4 24 | syl |  |-  ( ph -> ( .if ` W ) e. ( ( J tX J ) Cn C ) ) | 
						
							| 26 | 5 6 7 25 | cnmpt12f |  |-  ( ph -> ( x e. X |-> ( A ( .if ` W ) B ) ) e. ( K Cn C ) ) | 
						
							| 27 | 23 26 | eqeltrrd |  |-  ( ph -> ( x e. X |-> ( A ., B ) ) e. ( K Cn C ) ) |