Step |
Hyp |
Ref |
Expression |
1 |
|
cnmpt1ip.j |
|- J = ( TopOpen ` W ) |
2 |
|
cnmpt1ip.c |
|- C = ( TopOpen ` CCfld ) |
3 |
|
cnmpt1ip.h |
|- ., = ( .i ` W ) |
4 |
|
cnmpt1ip.r |
|- ( ph -> W e. CPreHil ) |
5 |
|
cnmpt1ip.k |
|- ( ph -> K e. ( TopOn ` X ) ) |
6 |
|
cnmpt1ip.a |
|- ( ph -> ( x e. X |-> A ) e. ( K Cn J ) ) |
7 |
|
cnmpt1ip.b |
|- ( ph -> ( x e. X |-> B ) e. ( K Cn J ) ) |
8 |
|
cphngp |
|- ( W e. CPreHil -> W e. NrmGrp ) |
9 |
|
ngptps |
|- ( W e. NrmGrp -> W e. TopSp ) |
10 |
4 8 9
|
3syl |
|- ( ph -> W e. TopSp ) |
11 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
12 |
11 1
|
istps |
|- ( W e. TopSp <-> J e. ( TopOn ` ( Base ` W ) ) ) |
13 |
10 12
|
sylib |
|- ( ph -> J e. ( TopOn ` ( Base ` W ) ) ) |
14 |
|
cnf2 |
|- ( ( K e. ( TopOn ` X ) /\ J e. ( TopOn ` ( Base ` W ) ) /\ ( x e. X |-> A ) e. ( K Cn J ) ) -> ( x e. X |-> A ) : X --> ( Base ` W ) ) |
15 |
5 13 6 14
|
syl3anc |
|- ( ph -> ( x e. X |-> A ) : X --> ( Base ` W ) ) |
16 |
15
|
fvmptelrn |
|- ( ( ph /\ x e. X ) -> A e. ( Base ` W ) ) |
17 |
|
cnf2 |
|- ( ( K e. ( TopOn ` X ) /\ J e. ( TopOn ` ( Base ` W ) ) /\ ( x e. X |-> B ) e. ( K Cn J ) ) -> ( x e. X |-> B ) : X --> ( Base ` W ) ) |
18 |
5 13 7 17
|
syl3anc |
|- ( ph -> ( x e. X |-> B ) : X --> ( Base ` W ) ) |
19 |
18
|
fvmptelrn |
|- ( ( ph /\ x e. X ) -> B e. ( Base ` W ) ) |
20 |
|
eqid |
|- ( .if ` W ) = ( .if ` W ) |
21 |
11 3 20
|
ipfval |
|- ( ( A e. ( Base ` W ) /\ B e. ( Base ` W ) ) -> ( A ( .if ` W ) B ) = ( A ., B ) ) |
22 |
16 19 21
|
syl2anc |
|- ( ( ph /\ x e. X ) -> ( A ( .if ` W ) B ) = ( A ., B ) ) |
23 |
22
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( A ( .if ` W ) B ) ) = ( x e. X |-> ( A ., B ) ) ) |
24 |
20 1 2
|
ipcn |
|- ( W e. CPreHil -> ( .if ` W ) e. ( ( J tX J ) Cn C ) ) |
25 |
4 24
|
syl |
|- ( ph -> ( .if ` W ) e. ( ( J tX J ) Cn C ) ) |
26 |
5 6 7 25
|
cnmpt12f |
|- ( ph -> ( x e. X |-> ( A ( .if ` W ) B ) ) e. ( K Cn C ) ) |
27 |
23 26
|
eqeltrrd |
|- ( ph -> ( x e. X |-> ( A ., B ) ) e. ( K Cn C ) ) |