| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmpt21.j |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 2 |
|
cnmpt21.k |
|- ( ph -> K e. ( TopOn ` Y ) ) |
| 3 |
|
fo1st |
|- 1st : _V -onto-> _V |
| 4 |
|
fofn |
|- ( 1st : _V -onto-> _V -> 1st Fn _V ) |
| 5 |
3 4
|
ax-mp |
|- 1st Fn _V |
| 6 |
|
ssv |
|- ( X X. Y ) C_ _V |
| 7 |
|
fnssres |
|- ( ( 1st Fn _V /\ ( X X. Y ) C_ _V ) -> ( 1st |` ( X X. Y ) ) Fn ( X X. Y ) ) |
| 8 |
5 6 7
|
mp2an |
|- ( 1st |` ( X X. Y ) ) Fn ( X X. Y ) |
| 9 |
|
dffn5 |
|- ( ( 1st |` ( X X. Y ) ) Fn ( X X. Y ) <-> ( 1st |` ( X X. Y ) ) = ( z e. ( X X. Y ) |-> ( ( 1st |` ( X X. Y ) ) ` z ) ) ) |
| 10 |
8 9
|
mpbi |
|- ( 1st |` ( X X. Y ) ) = ( z e. ( X X. Y ) |-> ( ( 1st |` ( X X. Y ) ) ` z ) ) |
| 11 |
|
fvres |
|- ( z e. ( X X. Y ) -> ( ( 1st |` ( X X. Y ) ) ` z ) = ( 1st ` z ) ) |
| 12 |
11
|
mpteq2ia |
|- ( z e. ( X X. Y ) |-> ( ( 1st |` ( X X. Y ) ) ` z ) ) = ( z e. ( X X. Y ) |-> ( 1st ` z ) ) |
| 13 |
|
vex |
|- x e. _V |
| 14 |
|
vex |
|- y e. _V |
| 15 |
13 14
|
op1std |
|- ( z = <. x , y >. -> ( 1st ` z ) = x ) |
| 16 |
15
|
mpompt |
|- ( z e. ( X X. Y ) |-> ( 1st ` z ) ) = ( x e. X , y e. Y |-> x ) |
| 17 |
10 12 16
|
3eqtri |
|- ( 1st |` ( X X. Y ) ) = ( x e. X , y e. Y |-> x ) |
| 18 |
|
tx1cn |
|- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) -> ( 1st |` ( X X. Y ) ) e. ( ( J tX K ) Cn J ) ) |
| 19 |
1 2 18
|
syl2anc |
|- ( ph -> ( 1st |` ( X X. Y ) ) e. ( ( J tX K ) Cn J ) ) |
| 20 |
17 19
|
eqeltrrid |
|- ( ph -> ( x e. X , y e. Y |-> x ) e. ( ( J tX K ) Cn J ) ) |