Step |
Hyp |
Ref |
Expression |
1 |
|
tlmtrg.f |
|- F = ( Scalar ` W ) |
2 |
|
cnmpt1vsca.t |
|- .x. = ( .s ` W ) |
3 |
|
cnmpt1vsca.j |
|- J = ( TopOpen ` W ) |
4 |
|
cnmpt1vsca.k |
|- K = ( TopOpen ` F ) |
5 |
|
cnmpt1vsca.w |
|- ( ph -> W e. TopMod ) |
6 |
|
cnmpt1vsca.l |
|- ( ph -> L e. ( TopOn ` X ) ) |
7 |
|
cnmpt1vsca.a |
|- ( ph -> ( x e. X |-> A ) e. ( L Cn K ) ) |
8 |
|
cnmpt1vsca.b |
|- ( ph -> ( x e. X |-> B ) e. ( L Cn J ) ) |
9 |
1
|
tlmscatps |
|- ( W e. TopMod -> F e. TopSp ) |
10 |
5 9
|
syl |
|- ( ph -> F e. TopSp ) |
11 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
12 |
11 4
|
istps |
|- ( F e. TopSp <-> K e. ( TopOn ` ( Base ` F ) ) ) |
13 |
10 12
|
sylib |
|- ( ph -> K e. ( TopOn ` ( Base ` F ) ) ) |
14 |
|
cnf2 |
|- ( ( L e. ( TopOn ` X ) /\ K e. ( TopOn ` ( Base ` F ) ) /\ ( x e. X |-> A ) e. ( L Cn K ) ) -> ( x e. X |-> A ) : X --> ( Base ` F ) ) |
15 |
6 13 7 14
|
syl3anc |
|- ( ph -> ( x e. X |-> A ) : X --> ( Base ` F ) ) |
16 |
15
|
fvmptelrn |
|- ( ( ph /\ x e. X ) -> A e. ( Base ` F ) ) |
17 |
|
tlmtps |
|- ( W e. TopMod -> W e. TopSp ) |
18 |
5 17
|
syl |
|- ( ph -> W e. TopSp ) |
19 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
20 |
19 3
|
istps |
|- ( W e. TopSp <-> J e. ( TopOn ` ( Base ` W ) ) ) |
21 |
18 20
|
sylib |
|- ( ph -> J e. ( TopOn ` ( Base ` W ) ) ) |
22 |
|
cnf2 |
|- ( ( L e. ( TopOn ` X ) /\ J e. ( TopOn ` ( Base ` W ) ) /\ ( x e. X |-> B ) e. ( L Cn J ) ) -> ( x e. X |-> B ) : X --> ( Base ` W ) ) |
23 |
6 21 8 22
|
syl3anc |
|- ( ph -> ( x e. X |-> B ) : X --> ( Base ` W ) ) |
24 |
23
|
fvmptelrn |
|- ( ( ph /\ x e. X ) -> B e. ( Base ` W ) ) |
25 |
|
eqid |
|- ( .sf ` W ) = ( .sf ` W ) |
26 |
19 1 11 25 2
|
scafval |
|- ( ( A e. ( Base ` F ) /\ B e. ( Base ` W ) ) -> ( A ( .sf ` W ) B ) = ( A .x. B ) ) |
27 |
16 24 26
|
syl2anc |
|- ( ( ph /\ x e. X ) -> ( A ( .sf ` W ) B ) = ( A .x. B ) ) |
28 |
27
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( A ( .sf ` W ) B ) ) = ( x e. X |-> ( A .x. B ) ) ) |
29 |
25 3 1 4
|
vscacn |
|- ( W e. TopMod -> ( .sf ` W ) e. ( ( K tX J ) Cn J ) ) |
30 |
5 29
|
syl |
|- ( ph -> ( .sf ` W ) e. ( ( K tX J ) Cn J ) ) |
31 |
6 7 8 30
|
cnmpt12f |
|- ( ph -> ( x e. X |-> ( A ( .sf ` W ) B ) ) e. ( L Cn J ) ) |
32 |
28 31
|
eqeltrrd |
|- ( ph -> ( x e. X |-> ( A .x. B ) ) e. ( L Cn J ) ) |