Metamath Proof Explorer


Theorem cnmpt2mulr

Description: Continuity of ring multiplication; analogue of cnmpt22f which cannot be used directly because .r is not a function. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses mulrcn.j
|- J = ( TopOpen ` R )
cnmpt1mulr.t
|- .x. = ( .r ` R )
cnmpt1mulr.r
|- ( ph -> R e. TopRing )
cnmpt1mulr.k
|- ( ph -> K e. ( TopOn ` X ) )
cnmpt2mulr.l
|- ( ph -> L e. ( TopOn ` Y ) )
cnmpt2mulr.a
|- ( ph -> ( x e. X , y e. Y |-> A ) e. ( ( K tX L ) Cn J ) )
cnmpt2mulr.b
|- ( ph -> ( x e. X , y e. Y |-> B ) e. ( ( K tX L ) Cn J ) )
Assertion cnmpt2mulr
|- ( ph -> ( x e. X , y e. Y |-> ( A .x. B ) ) e. ( ( K tX L ) Cn J ) )

Proof

Step Hyp Ref Expression
1 mulrcn.j
 |-  J = ( TopOpen ` R )
2 cnmpt1mulr.t
 |-  .x. = ( .r ` R )
3 cnmpt1mulr.r
 |-  ( ph -> R e. TopRing )
4 cnmpt1mulr.k
 |-  ( ph -> K e. ( TopOn ` X ) )
5 cnmpt2mulr.l
 |-  ( ph -> L e. ( TopOn ` Y ) )
6 cnmpt2mulr.a
 |-  ( ph -> ( x e. X , y e. Y |-> A ) e. ( ( K tX L ) Cn J ) )
7 cnmpt2mulr.b
 |-  ( ph -> ( x e. X , y e. Y |-> B ) e. ( ( K tX L ) Cn J ) )
8 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
9 8 1 mgptopn
 |-  J = ( TopOpen ` ( mulGrp ` R ) )
10 8 2 mgpplusg
 |-  .x. = ( +g ` ( mulGrp ` R ) )
11 8 trgtmd
 |-  ( R e. TopRing -> ( mulGrp ` R ) e. TopMnd )
12 3 11 syl
 |-  ( ph -> ( mulGrp ` R ) e. TopMnd )
13 9 10 12 4 5 6 7 cnmpt2plusg
 |-  ( ph -> ( x e. X , y e. Y |-> ( A .x. B ) ) e. ( ( K tX L ) Cn J ) )