Step |
Hyp |
Ref |
Expression |
1 |
|
cnmpt21.j |
|- ( ph -> J e. ( TopOn ` X ) ) |
2 |
|
cnmpt21.k |
|- ( ph -> K e. ( TopOn ` Y ) ) |
3 |
|
fo2nd |
|- 2nd : _V -onto-> _V |
4 |
|
fofn |
|- ( 2nd : _V -onto-> _V -> 2nd Fn _V ) |
5 |
3 4
|
ax-mp |
|- 2nd Fn _V |
6 |
|
ssv |
|- ( X X. Y ) C_ _V |
7 |
|
fnssres |
|- ( ( 2nd Fn _V /\ ( X X. Y ) C_ _V ) -> ( 2nd |` ( X X. Y ) ) Fn ( X X. Y ) ) |
8 |
5 6 7
|
mp2an |
|- ( 2nd |` ( X X. Y ) ) Fn ( X X. Y ) |
9 |
|
dffn5 |
|- ( ( 2nd |` ( X X. Y ) ) Fn ( X X. Y ) <-> ( 2nd |` ( X X. Y ) ) = ( z e. ( X X. Y ) |-> ( ( 2nd |` ( X X. Y ) ) ` z ) ) ) |
10 |
8 9
|
mpbi |
|- ( 2nd |` ( X X. Y ) ) = ( z e. ( X X. Y ) |-> ( ( 2nd |` ( X X. Y ) ) ` z ) ) |
11 |
|
fvres |
|- ( z e. ( X X. Y ) -> ( ( 2nd |` ( X X. Y ) ) ` z ) = ( 2nd ` z ) ) |
12 |
11
|
mpteq2ia |
|- ( z e. ( X X. Y ) |-> ( ( 2nd |` ( X X. Y ) ) ` z ) ) = ( z e. ( X X. Y ) |-> ( 2nd ` z ) ) |
13 |
|
vex |
|- x e. _V |
14 |
|
vex |
|- y e. _V |
15 |
13 14
|
op2ndd |
|- ( z = <. x , y >. -> ( 2nd ` z ) = y ) |
16 |
15
|
mpompt |
|- ( z e. ( X X. Y ) |-> ( 2nd ` z ) ) = ( x e. X , y e. Y |-> y ) |
17 |
10 12 16
|
3eqtri |
|- ( 2nd |` ( X X. Y ) ) = ( x e. X , y e. Y |-> y ) |
18 |
|
tx2cn |
|- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) -> ( 2nd |` ( X X. Y ) ) e. ( ( J tX K ) Cn K ) ) |
19 |
1 2 18
|
syl2anc |
|- ( ph -> ( 2nd |` ( X X. Y ) ) e. ( ( J tX K ) Cn K ) ) |
20 |
17 19
|
eqeltrrid |
|- ( ph -> ( x e. X , y e. Y |-> y ) e. ( ( J tX K ) Cn K ) ) |