Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnmptid.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
cnmptc.k | |- ( ph -> K e. ( TopOn ` Y ) ) |
||
cnmptc.p | |- ( ph -> P e. Y ) |
||
Assertion | cnmptc | |- ( ph -> ( x e. X |-> P ) e. ( J Cn K ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptid.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
2 | cnmptc.k | |- ( ph -> K e. ( TopOn ` Y ) ) |
|
3 | cnmptc.p | |- ( ph -> P e. Y ) |
|
4 | fconstmpt | |- ( X X. { P } ) = ( x e. X |-> P ) |
|
5 | cnconst2 | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) /\ P e. Y ) -> ( X X. { P } ) e. ( J Cn K ) ) |
|
6 | 1 2 3 5 | syl3anc | |- ( ph -> ( X X. { P } ) e. ( J Cn K ) ) |
7 | 4 6 | eqeltrrid | |- ( ph -> ( x e. X |-> P ) e. ( J Cn K ) ) |