Metamath Proof Explorer


Theorem cnmptc

Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmptid.j
|- ( ph -> J e. ( TopOn ` X ) )
cnmptc.k
|- ( ph -> K e. ( TopOn ` Y ) )
cnmptc.p
|- ( ph -> P e. Y )
Assertion cnmptc
|- ( ph -> ( x e. X |-> P ) e. ( J Cn K ) )

Proof

Step Hyp Ref Expression
1 cnmptid.j
 |-  ( ph -> J e. ( TopOn ` X ) )
2 cnmptc.k
 |-  ( ph -> K e. ( TopOn ` Y ) )
3 cnmptc.p
 |-  ( ph -> P e. Y )
4 fconstmpt
 |-  ( X X. { P } ) = ( x e. X |-> P )
5 cnconst2
 |-  ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) /\ P e. Y ) -> ( X X. { P } ) e. ( J Cn K ) )
6 1 2 3 5 syl3anc
 |-  ( ph -> ( X X. { P } ) e. ( J Cn K ) )
7 4 6 eqeltrrid
 |-  ( ph -> ( x e. X |-> P ) e. ( J Cn K ) )