Metamath Proof Explorer


Theorem cnmptid

Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis cnmptid.j
|- ( ph -> J e. ( TopOn ` X ) )
Assertion cnmptid
|- ( ph -> ( x e. X |-> x ) e. ( J Cn J ) )

Proof

Step Hyp Ref Expression
1 cnmptid.j
 |-  ( ph -> J e. ( TopOn ` X ) )
2 mptresid
 |-  ( _I |` X ) = ( x e. X |-> x )
3 idcn
 |-  ( J e. ( TopOn ` X ) -> ( _I |` X ) e. ( J Cn J ) )
4 1 3 syl
 |-  ( ph -> ( _I |` X ) e. ( J Cn J ) )
5 2 4 eqeltrrid
 |-  ( ph -> ( x e. X |-> x ) e. ( J Cn J ) )