Metamath Proof Explorer


Theorem cnmptlimc

Description: If F is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses cnmptlimc.f
|- ( ph -> ( x e. A |-> X ) e. ( A -cn-> D ) )
cnmptlimc.b
|- ( ph -> B e. A )
cnmptlimc.1
|- ( x = B -> X = Y )
Assertion cnmptlimc
|- ( ph -> Y e. ( ( x e. A |-> X ) limCC B ) )

Proof

Step Hyp Ref Expression
1 cnmptlimc.f
 |-  ( ph -> ( x e. A |-> X ) e. ( A -cn-> D ) )
2 cnmptlimc.b
 |-  ( ph -> B e. A )
3 cnmptlimc.1
 |-  ( x = B -> X = Y )
4 eqid
 |-  ( x e. A |-> X ) = ( x e. A |-> X )
5 3 eleq1d
 |-  ( x = B -> ( X e. D <-> Y e. D ) )
6 cncff
 |-  ( ( x e. A |-> X ) e. ( A -cn-> D ) -> ( x e. A |-> X ) : A --> D )
7 1 6 syl
 |-  ( ph -> ( x e. A |-> X ) : A --> D )
8 4 fmpt
 |-  ( A. x e. A X e. D <-> ( x e. A |-> X ) : A --> D )
9 7 8 sylibr
 |-  ( ph -> A. x e. A X e. D )
10 5 9 2 rspcdva
 |-  ( ph -> Y e. D )
11 4 3 2 10 fvmptd3
 |-  ( ph -> ( ( x e. A |-> X ) ` B ) = Y )
12 1 2 cnlimci
 |-  ( ph -> ( ( x e. A |-> X ) ` B ) e. ( ( x e. A |-> X ) limCC B ) )
13 11 12 eqeltrrd
 |-  ( ph -> Y e. ( ( x e. A |-> X ) limCC B ) )