Step |
Hyp |
Ref |
Expression |
1 |
|
cnmptre.1 |
|- R = ( TopOpen ` CCfld ) |
2 |
|
cnmptre.2 |
|- J = ( ( topGen ` ran (,) ) |`t A ) |
3 |
|
cnmptre.3 |
|- K = ( ( topGen ` ran (,) ) |`t B ) |
4 |
|
cnmptre.4 |
|- ( ph -> A C_ RR ) |
5 |
|
cnmptre.5 |
|- ( ph -> B C_ RR ) |
6 |
|
cnmptre.6 |
|- ( ( ph /\ x e. A ) -> F e. B ) |
7 |
|
cnmptre.7 |
|- ( ph -> ( x e. CC |-> F ) e. ( R Cn R ) ) |
8 |
|
eqid |
|- ( R |`t A ) = ( R |`t A ) |
9 |
1
|
cnfldtopon |
|- R e. ( TopOn ` CC ) |
10 |
9
|
a1i |
|- ( ph -> R e. ( TopOn ` CC ) ) |
11 |
|
ax-resscn |
|- RR C_ CC |
12 |
4 11
|
sstrdi |
|- ( ph -> A C_ CC ) |
13 |
8 10 12 7
|
cnmpt1res |
|- ( ph -> ( x e. A |-> F ) e. ( ( R |`t A ) Cn R ) ) |
14 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
15 |
1 14
|
rerest |
|- ( A C_ RR -> ( R |`t A ) = ( ( topGen ` ran (,) ) |`t A ) ) |
16 |
4 15
|
syl |
|- ( ph -> ( R |`t A ) = ( ( topGen ` ran (,) ) |`t A ) ) |
17 |
16 2
|
eqtr4di |
|- ( ph -> ( R |`t A ) = J ) |
18 |
17
|
oveq1d |
|- ( ph -> ( ( R |`t A ) Cn R ) = ( J Cn R ) ) |
19 |
13 18
|
eleqtrd |
|- ( ph -> ( x e. A |-> F ) e. ( J Cn R ) ) |
20 |
6
|
fmpttd |
|- ( ph -> ( x e. A |-> F ) : A --> B ) |
21 |
20
|
frnd |
|- ( ph -> ran ( x e. A |-> F ) C_ B ) |
22 |
5 11
|
sstrdi |
|- ( ph -> B C_ CC ) |
23 |
|
cnrest2 |
|- ( ( R e. ( TopOn ` CC ) /\ ran ( x e. A |-> F ) C_ B /\ B C_ CC ) -> ( ( x e. A |-> F ) e. ( J Cn R ) <-> ( x e. A |-> F ) e. ( J Cn ( R |`t B ) ) ) ) |
24 |
9 21 22 23
|
mp3an2i |
|- ( ph -> ( ( x e. A |-> F ) e. ( J Cn R ) <-> ( x e. A |-> F ) e. ( J Cn ( R |`t B ) ) ) ) |
25 |
19 24
|
mpbid |
|- ( ph -> ( x e. A |-> F ) e. ( J Cn ( R |`t B ) ) ) |
26 |
1 14
|
rerest |
|- ( B C_ RR -> ( R |`t B ) = ( ( topGen ` ran (,) ) |`t B ) ) |
27 |
5 26
|
syl |
|- ( ph -> ( R |`t B ) = ( ( topGen ` ran (,) ) |`t B ) ) |
28 |
27 3
|
eqtr4di |
|- ( ph -> ( R |`t B ) = K ) |
29 |
28
|
oveq2d |
|- ( ph -> ( J Cn ( R |`t B ) ) = ( J Cn K ) ) |
30 |
25 29
|
eleqtrd |
|- ( ph -> ( x e. A |-> F ) e. ( J Cn K ) ) |