| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnmptre.1 |  |-  R = ( TopOpen ` CCfld ) | 
						
							| 2 |  | cnmptre.2 |  |-  J = ( ( topGen ` ran (,) ) |`t A ) | 
						
							| 3 |  | cnmptre.3 |  |-  K = ( ( topGen ` ran (,) ) |`t B ) | 
						
							| 4 |  | cnmptre.4 |  |-  ( ph -> A C_ RR ) | 
						
							| 5 |  | cnmptre.5 |  |-  ( ph -> B C_ RR ) | 
						
							| 6 |  | cnmptre.6 |  |-  ( ( ph /\ x e. A ) -> F e. B ) | 
						
							| 7 |  | cnmptre.7 |  |-  ( ph -> ( x e. CC |-> F ) e. ( R Cn R ) ) | 
						
							| 8 |  | eqid |  |-  ( R |`t A ) = ( R |`t A ) | 
						
							| 9 | 1 | cnfldtopon |  |-  R e. ( TopOn ` CC ) | 
						
							| 10 | 9 | a1i |  |-  ( ph -> R e. ( TopOn ` CC ) ) | 
						
							| 11 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 12 | 4 11 | sstrdi |  |-  ( ph -> A C_ CC ) | 
						
							| 13 | 8 10 12 7 | cnmpt1res |  |-  ( ph -> ( x e. A |-> F ) e. ( ( R |`t A ) Cn R ) ) | 
						
							| 14 |  | eqid |  |-  ( topGen ` ran (,) ) = ( topGen ` ran (,) ) | 
						
							| 15 | 1 14 | rerest |  |-  ( A C_ RR -> ( R |`t A ) = ( ( topGen ` ran (,) ) |`t A ) ) | 
						
							| 16 | 4 15 | syl |  |-  ( ph -> ( R |`t A ) = ( ( topGen ` ran (,) ) |`t A ) ) | 
						
							| 17 | 16 2 | eqtr4di |  |-  ( ph -> ( R |`t A ) = J ) | 
						
							| 18 | 17 | oveq1d |  |-  ( ph -> ( ( R |`t A ) Cn R ) = ( J Cn R ) ) | 
						
							| 19 | 13 18 | eleqtrd |  |-  ( ph -> ( x e. A |-> F ) e. ( J Cn R ) ) | 
						
							| 20 | 6 | fmpttd |  |-  ( ph -> ( x e. A |-> F ) : A --> B ) | 
						
							| 21 | 20 | frnd |  |-  ( ph -> ran ( x e. A |-> F ) C_ B ) | 
						
							| 22 | 5 11 | sstrdi |  |-  ( ph -> B C_ CC ) | 
						
							| 23 |  | cnrest2 |  |-  ( ( R e. ( TopOn ` CC ) /\ ran ( x e. A |-> F ) C_ B /\ B C_ CC ) -> ( ( x e. A |-> F ) e. ( J Cn R ) <-> ( x e. A |-> F ) e. ( J Cn ( R |`t B ) ) ) ) | 
						
							| 24 | 9 21 22 23 | mp3an2i |  |-  ( ph -> ( ( x e. A |-> F ) e. ( J Cn R ) <-> ( x e. A |-> F ) e. ( J Cn ( R |`t B ) ) ) ) | 
						
							| 25 | 19 24 | mpbid |  |-  ( ph -> ( x e. A |-> F ) e. ( J Cn ( R |`t B ) ) ) | 
						
							| 26 | 1 14 | rerest |  |-  ( B C_ RR -> ( R |`t B ) = ( ( topGen ` ran (,) ) |`t B ) ) | 
						
							| 27 | 5 26 | syl |  |-  ( ph -> ( R |`t B ) = ( ( topGen ` ran (,) ) |`t B ) ) | 
						
							| 28 | 27 3 | eqtr4di |  |-  ( ph -> ( R |`t B ) = K ) | 
						
							| 29 | 28 | oveq2d |  |-  ( ph -> ( J Cn ( R |`t B ) ) = ( J Cn K ) ) | 
						
							| 30 | 25 29 | eleqtrd |  |-  ( ph -> ( x e. A |-> F ) e. ( J Cn K ) ) |