Metamath Proof Explorer


Theorem cnmsgnbas

Description: The base set of the sign subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypothesis cnmsgngrp.u
|- U = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } )
Assertion cnmsgnbas
|- { 1 , -u 1 } = ( Base ` U )

Proof

Step Hyp Ref Expression
1 cnmsgngrp.u
 |-  U = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } )
2 ax-1cn
 |-  1 e. CC
3 neg1cn
 |-  -u 1 e. CC
4 prssi
 |-  ( ( 1 e. CC /\ -u 1 e. CC ) -> { 1 , -u 1 } C_ CC )
5 2 3 4 mp2an
 |-  { 1 , -u 1 } C_ CC
6 eqid
 |-  ( mulGrp ` CCfld ) = ( mulGrp ` CCfld )
7 cnfldbas
 |-  CC = ( Base ` CCfld )
8 6 7 mgpbas
 |-  CC = ( Base ` ( mulGrp ` CCfld ) )
9 1 8 ressbas2
 |-  ( { 1 , -u 1 } C_ CC -> { 1 , -u 1 } = ( Base ` U ) )
10 5 9 ax-mp
 |-  { 1 , -u 1 } = ( Base ` U )