Step |
Hyp |
Ref |
Expression |
1 |
|
cnmsgnsubg.m |
|- M = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
2 |
|
elpri |
|- ( x e. { 1 , -u 1 } -> ( x = 1 \/ x = -u 1 ) ) |
3 |
|
id |
|- ( x = 1 -> x = 1 ) |
4 |
|
ax-1cn |
|- 1 e. CC |
5 |
3 4
|
eqeltrdi |
|- ( x = 1 -> x e. CC ) |
6 |
|
id |
|- ( x = -u 1 -> x = -u 1 ) |
7 |
|
neg1cn |
|- -u 1 e. CC |
8 |
6 7
|
eqeltrdi |
|- ( x = -u 1 -> x e. CC ) |
9 |
5 8
|
jaoi |
|- ( ( x = 1 \/ x = -u 1 ) -> x e. CC ) |
10 |
2 9
|
syl |
|- ( x e. { 1 , -u 1 } -> x e. CC ) |
11 |
|
ax-1ne0 |
|- 1 =/= 0 |
12 |
11
|
a1i |
|- ( x = 1 -> 1 =/= 0 ) |
13 |
3 12
|
eqnetrd |
|- ( x = 1 -> x =/= 0 ) |
14 |
|
neg1ne0 |
|- -u 1 =/= 0 |
15 |
14
|
a1i |
|- ( x = -u 1 -> -u 1 =/= 0 ) |
16 |
6 15
|
eqnetrd |
|- ( x = -u 1 -> x =/= 0 ) |
17 |
13 16
|
jaoi |
|- ( ( x = 1 \/ x = -u 1 ) -> x =/= 0 ) |
18 |
2 17
|
syl |
|- ( x e. { 1 , -u 1 } -> x =/= 0 ) |
19 |
|
elpri |
|- ( y e. { 1 , -u 1 } -> ( y = 1 \/ y = -u 1 ) ) |
20 |
|
oveq12 |
|- ( ( x = 1 /\ y = 1 ) -> ( x x. y ) = ( 1 x. 1 ) ) |
21 |
4
|
mulid1i |
|- ( 1 x. 1 ) = 1 |
22 |
|
1ex |
|- 1 e. _V |
23 |
22
|
prid1 |
|- 1 e. { 1 , -u 1 } |
24 |
21 23
|
eqeltri |
|- ( 1 x. 1 ) e. { 1 , -u 1 } |
25 |
20 24
|
eqeltrdi |
|- ( ( x = 1 /\ y = 1 ) -> ( x x. y ) e. { 1 , -u 1 } ) |
26 |
|
oveq12 |
|- ( ( x = -u 1 /\ y = 1 ) -> ( x x. y ) = ( -u 1 x. 1 ) ) |
27 |
7
|
mulid1i |
|- ( -u 1 x. 1 ) = -u 1 |
28 |
|
negex |
|- -u 1 e. _V |
29 |
28
|
prid2 |
|- -u 1 e. { 1 , -u 1 } |
30 |
27 29
|
eqeltri |
|- ( -u 1 x. 1 ) e. { 1 , -u 1 } |
31 |
26 30
|
eqeltrdi |
|- ( ( x = -u 1 /\ y = 1 ) -> ( x x. y ) e. { 1 , -u 1 } ) |
32 |
|
oveq12 |
|- ( ( x = 1 /\ y = -u 1 ) -> ( x x. y ) = ( 1 x. -u 1 ) ) |
33 |
7
|
mulid2i |
|- ( 1 x. -u 1 ) = -u 1 |
34 |
33 29
|
eqeltri |
|- ( 1 x. -u 1 ) e. { 1 , -u 1 } |
35 |
32 34
|
eqeltrdi |
|- ( ( x = 1 /\ y = -u 1 ) -> ( x x. y ) e. { 1 , -u 1 } ) |
36 |
|
oveq12 |
|- ( ( x = -u 1 /\ y = -u 1 ) -> ( x x. y ) = ( -u 1 x. -u 1 ) ) |
37 |
|
neg1mulneg1e1 |
|- ( -u 1 x. -u 1 ) = 1 |
38 |
37 23
|
eqeltri |
|- ( -u 1 x. -u 1 ) e. { 1 , -u 1 } |
39 |
36 38
|
eqeltrdi |
|- ( ( x = -u 1 /\ y = -u 1 ) -> ( x x. y ) e. { 1 , -u 1 } ) |
40 |
25 31 35 39
|
ccase |
|- ( ( ( x = 1 \/ x = -u 1 ) /\ ( y = 1 \/ y = -u 1 ) ) -> ( x x. y ) e. { 1 , -u 1 } ) |
41 |
2 19 40
|
syl2an |
|- ( ( x e. { 1 , -u 1 } /\ y e. { 1 , -u 1 } ) -> ( x x. y ) e. { 1 , -u 1 } ) |
42 |
|
oveq2 |
|- ( x = 1 -> ( 1 / x ) = ( 1 / 1 ) ) |
43 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
44 |
43 23
|
eqeltri |
|- ( 1 / 1 ) e. { 1 , -u 1 } |
45 |
42 44
|
eqeltrdi |
|- ( x = 1 -> ( 1 / x ) e. { 1 , -u 1 } ) |
46 |
|
oveq2 |
|- ( x = -u 1 -> ( 1 / x ) = ( 1 / -u 1 ) ) |
47 |
|
divneg2 |
|- ( ( 1 e. CC /\ 1 e. CC /\ 1 =/= 0 ) -> -u ( 1 / 1 ) = ( 1 / -u 1 ) ) |
48 |
4 4 11 47
|
mp3an |
|- -u ( 1 / 1 ) = ( 1 / -u 1 ) |
49 |
43
|
negeqi |
|- -u ( 1 / 1 ) = -u 1 |
50 |
48 49
|
eqtr3i |
|- ( 1 / -u 1 ) = -u 1 |
51 |
50 29
|
eqeltri |
|- ( 1 / -u 1 ) e. { 1 , -u 1 } |
52 |
46 51
|
eqeltrdi |
|- ( x = -u 1 -> ( 1 / x ) e. { 1 , -u 1 } ) |
53 |
45 52
|
jaoi |
|- ( ( x = 1 \/ x = -u 1 ) -> ( 1 / x ) e. { 1 , -u 1 } ) |
54 |
2 53
|
syl |
|- ( x e. { 1 , -u 1 } -> ( 1 / x ) e. { 1 , -u 1 } ) |
55 |
1 10 18 41 23 54
|
cnmsubglem |
|- { 1 , -u 1 } e. ( SubGrp ` M ) |