| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmsgnsubg.m |
|- M = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
| 2 |
|
elpri |
|- ( x e. { 1 , -u 1 } -> ( x = 1 \/ x = -u 1 ) ) |
| 3 |
|
id |
|- ( x = 1 -> x = 1 ) |
| 4 |
|
ax-1cn |
|- 1 e. CC |
| 5 |
3 4
|
eqeltrdi |
|- ( x = 1 -> x e. CC ) |
| 6 |
|
id |
|- ( x = -u 1 -> x = -u 1 ) |
| 7 |
|
neg1cn |
|- -u 1 e. CC |
| 8 |
6 7
|
eqeltrdi |
|- ( x = -u 1 -> x e. CC ) |
| 9 |
5 8
|
jaoi |
|- ( ( x = 1 \/ x = -u 1 ) -> x e. CC ) |
| 10 |
2 9
|
syl |
|- ( x e. { 1 , -u 1 } -> x e. CC ) |
| 11 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 12 |
11
|
a1i |
|- ( x = 1 -> 1 =/= 0 ) |
| 13 |
3 12
|
eqnetrd |
|- ( x = 1 -> x =/= 0 ) |
| 14 |
|
neg1ne0 |
|- -u 1 =/= 0 |
| 15 |
14
|
a1i |
|- ( x = -u 1 -> -u 1 =/= 0 ) |
| 16 |
6 15
|
eqnetrd |
|- ( x = -u 1 -> x =/= 0 ) |
| 17 |
13 16
|
jaoi |
|- ( ( x = 1 \/ x = -u 1 ) -> x =/= 0 ) |
| 18 |
2 17
|
syl |
|- ( x e. { 1 , -u 1 } -> x =/= 0 ) |
| 19 |
|
elpri |
|- ( y e. { 1 , -u 1 } -> ( y = 1 \/ y = -u 1 ) ) |
| 20 |
|
oveq12 |
|- ( ( x = 1 /\ y = 1 ) -> ( x x. y ) = ( 1 x. 1 ) ) |
| 21 |
4
|
mulridi |
|- ( 1 x. 1 ) = 1 |
| 22 |
|
1ex |
|- 1 e. _V |
| 23 |
22
|
prid1 |
|- 1 e. { 1 , -u 1 } |
| 24 |
21 23
|
eqeltri |
|- ( 1 x. 1 ) e. { 1 , -u 1 } |
| 25 |
20 24
|
eqeltrdi |
|- ( ( x = 1 /\ y = 1 ) -> ( x x. y ) e. { 1 , -u 1 } ) |
| 26 |
|
oveq12 |
|- ( ( x = -u 1 /\ y = 1 ) -> ( x x. y ) = ( -u 1 x. 1 ) ) |
| 27 |
7
|
mulridi |
|- ( -u 1 x. 1 ) = -u 1 |
| 28 |
|
negex |
|- -u 1 e. _V |
| 29 |
28
|
prid2 |
|- -u 1 e. { 1 , -u 1 } |
| 30 |
27 29
|
eqeltri |
|- ( -u 1 x. 1 ) e. { 1 , -u 1 } |
| 31 |
26 30
|
eqeltrdi |
|- ( ( x = -u 1 /\ y = 1 ) -> ( x x. y ) e. { 1 , -u 1 } ) |
| 32 |
|
oveq12 |
|- ( ( x = 1 /\ y = -u 1 ) -> ( x x. y ) = ( 1 x. -u 1 ) ) |
| 33 |
7
|
mullidi |
|- ( 1 x. -u 1 ) = -u 1 |
| 34 |
33 29
|
eqeltri |
|- ( 1 x. -u 1 ) e. { 1 , -u 1 } |
| 35 |
32 34
|
eqeltrdi |
|- ( ( x = 1 /\ y = -u 1 ) -> ( x x. y ) e. { 1 , -u 1 } ) |
| 36 |
|
oveq12 |
|- ( ( x = -u 1 /\ y = -u 1 ) -> ( x x. y ) = ( -u 1 x. -u 1 ) ) |
| 37 |
|
neg1mulneg1e1 |
|- ( -u 1 x. -u 1 ) = 1 |
| 38 |
37 23
|
eqeltri |
|- ( -u 1 x. -u 1 ) e. { 1 , -u 1 } |
| 39 |
36 38
|
eqeltrdi |
|- ( ( x = -u 1 /\ y = -u 1 ) -> ( x x. y ) e. { 1 , -u 1 } ) |
| 40 |
25 31 35 39
|
ccase |
|- ( ( ( x = 1 \/ x = -u 1 ) /\ ( y = 1 \/ y = -u 1 ) ) -> ( x x. y ) e. { 1 , -u 1 } ) |
| 41 |
2 19 40
|
syl2an |
|- ( ( x e. { 1 , -u 1 } /\ y e. { 1 , -u 1 } ) -> ( x x. y ) e. { 1 , -u 1 } ) |
| 42 |
|
oveq2 |
|- ( x = 1 -> ( 1 / x ) = ( 1 / 1 ) ) |
| 43 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
| 44 |
43 23
|
eqeltri |
|- ( 1 / 1 ) e. { 1 , -u 1 } |
| 45 |
42 44
|
eqeltrdi |
|- ( x = 1 -> ( 1 / x ) e. { 1 , -u 1 } ) |
| 46 |
|
oveq2 |
|- ( x = -u 1 -> ( 1 / x ) = ( 1 / -u 1 ) ) |
| 47 |
|
divneg2 |
|- ( ( 1 e. CC /\ 1 e. CC /\ 1 =/= 0 ) -> -u ( 1 / 1 ) = ( 1 / -u 1 ) ) |
| 48 |
4 4 11 47
|
mp3an |
|- -u ( 1 / 1 ) = ( 1 / -u 1 ) |
| 49 |
43
|
negeqi |
|- -u ( 1 / 1 ) = -u 1 |
| 50 |
48 49
|
eqtr3i |
|- ( 1 / -u 1 ) = -u 1 |
| 51 |
50 29
|
eqeltri |
|- ( 1 / -u 1 ) e. { 1 , -u 1 } |
| 52 |
46 51
|
eqeltrdi |
|- ( x = -u 1 -> ( 1 / x ) e. { 1 , -u 1 } ) |
| 53 |
45 52
|
jaoi |
|- ( ( x = 1 \/ x = -u 1 ) -> ( 1 / x ) e. { 1 , -u 1 } ) |
| 54 |
2 53
|
syl |
|- ( x e. { 1 , -u 1 } -> ( 1 / x ) e. { 1 , -u 1 } ) |
| 55 |
1 10 18 41 23 54
|
cnmsubglem |
|- { 1 , -u 1 } e. ( SubGrp ` M ) |