Step |
Hyp |
Ref |
Expression |
1 |
|
cnmgpabl.m |
|- M = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
2 |
|
cnmsubglem.1 |
|- ( x e. A -> x e. CC ) |
3 |
|
cnmsubglem.2 |
|- ( x e. A -> x =/= 0 ) |
4 |
|
cnmsubglem.3 |
|- ( ( x e. A /\ y e. A ) -> ( x x. y ) e. A ) |
5 |
|
cnmsubglem.4 |
|- 1 e. A |
6 |
|
cnmsubglem.5 |
|- ( x e. A -> ( 1 / x ) e. A ) |
7 |
|
eldifsn |
|- ( x e. ( CC \ { 0 } ) <-> ( x e. CC /\ x =/= 0 ) ) |
8 |
2 3 7
|
sylanbrc |
|- ( x e. A -> x e. ( CC \ { 0 } ) ) |
9 |
8
|
ssriv |
|- A C_ ( CC \ { 0 } ) |
10 |
5
|
ne0ii |
|- A =/= (/) |
11 |
4
|
ralrimiva |
|- ( x e. A -> A. y e. A ( x x. y ) e. A ) |
12 |
|
cnfldinv |
|- ( ( x e. CC /\ x =/= 0 ) -> ( ( invr ` CCfld ) ` x ) = ( 1 / x ) ) |
13 |
2 3 12
|
syl2anc |
|- ( x e. A -> ( ( invr ` CCfld ) ` x ) = ( 1 / x ) ) |
14 |
13 6
|
eqeltrd |
|- ( x e. A -> ( ( invr ` CCfld ) ` x ) e. A ) |
15 |
11 14
|
jca |
|- ( x e. A -> ( A. y e. A ( x x. y ) e. A /\ ( ( invr ` CCfld ) ` x ) e. A ) ) |
16 |
15
|
rgen |
|- A. x e. A ( A. y e. A ( x x. y ) e. A /\ ( ( invr ` CCfld ) ` x ) e. A ) |
17 |
1
|
cnmgpabl |
|- M e. Abel |
18 |
|
ablgrp |
|- ( M e. Abel -> M e. Grp ) |
19 |
|
difss |
|- ( CC \ { 0 } ) C_ CC |
20 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
21 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
22 |
20 21
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
23 |
1 22
|
ressbas2 |
|- ( ( CC \ { 0 } ) C_ CC -> ( CC \ { 0 } ) = ( Base ` M ) ) |
24 |
19 23
|
ax-mp |
|- ( CC \ { 0 } ) = ( Base ` M ) |
25 |
|
cnex |
|- CC e. _V |
26 |
|
difexg |
|- ( CC e. _V -> ( CC \ { 0 } ) e. _V ) |
27 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
28 |
20 27
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
29 |
1 28
|
ressplusg |
|- ( ( CC \ { 0 } ) e. _V -> x. = ( +g ` M ) ) |
30 |
25 26 29
|
mp2b |
|- x. = ( +g ` M ) |
31 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
32 |
|
cndrng |
|- CCfld e. DivRing |
33 |
21 31 32
|
drngui |
|- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
34 |
|
eqid |
|- ( invr ` CCfld ) = ( invr ` CCfld ) |
35 |
33 1 34
|
invrfval |
|- ( invr ` CCfld ) = ( invg ` M ) |
36 |
24 30 35
|
issubg2 |
|- ( M e. Grp -> ( A e. ( SubGrp ` M ) <-> ( A C_ ( CC \ { 0 } ) /\ A =/= (/) /\ A. x e. A ( A. y e. A ( x x. y ) e. A /\ ( ( invr ` CCfld ) ` x ) e. A ) ) ) ) |
37 |
17 18 36
|
mp2b |
|- ( A e. ( SubGrp ` M ) <-> ( A C_ ( CC \ { 0 } ) /\ A =/= (/) /\ A. x e. A ( A. y e. A ( x x. y ) e. A /\ ( ( invr ` CCfld ) ` x ) e. A ) ) ) |
38 |
9 10 16 37
|
mpbir3an |
|- A e. ( SubGrp ` M ) |