| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmgpabl.m |
|- M = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
| 2 |
|
cnmsubglem.1 |
|- ( x e. A -> x e. CC ) |
| 3 |
|
cnmsubglem.2 |
|- ( x e. A -> x =/= 0 ) |
| 4 |
|
cnmsubglem.3 |
|- ( ( x e. A /\ y e. A ) -> ( x x. y ) e. A ) |
| 5 |
|
cnmsubglem.4 |
|- 1 e. A |
| 6 |
|
cnmsubglem.5 |
|- ( x e. A -> ( 1 / x ) e. A ) |
| 7 |
|
eldifsn |
|- ( x e. ( CC \ { 0 } ) <-> ( x e. CC /\ x =/= 0 ) ) |
| 8 |
2 3 7
|
sylanbrc |
|- ( x e. A -> x e. ( CC \ { 0 } ) ) |
| 9 |
8
|
ssriv |
|- A C_ ( CC \ { 0 } ) |
| 10 |
5
|
ne0ii |
|- A =/= (/) |
| 11 |
4
|
ralrimiva |
|- ( x e. A -> A. y e. A ( x x. y ) e. A ) |
| 12 |
|
cnfldinv |
|- ( ( x e. CC /\ x =/= 0 ) -> ( ( invr ` CCfld ) ` x ) = ( 1 / x ) ) |
| 13 |
2 3 12
|
syl2anc |
|- ( x e. A -> ( ( invr ` CCfld ) ` x ) = ( 1 / x ) ) |
| 14 |
13 6
|
eqeltrd |
|- ( x e. A -> ( ( invr ` CCfld ) ` x ) e. A ) |
| 15 |
11 14
|
jca |
|- ( x e. A -> ( A. y e. A ( x x. y ) e. A /\ ( ( invr ` CCfld ) ` x ) e. A ) ) |
| 16 |
15
|
rgen |
|- A. x e. A ( A. y e. A ( x x. y ) e. A /\ ( ( invr ` CCfld ) ` x ) e. A ) |
| 17 |
1
|
cnmgpabl |
|- M e. Abel |
| 18 |
|
ablgrp |
|- ( M e. Abel -> M e. Grp ) |
| 19 |
|
difss |
|- ( CC \ { 0 } ) C_ CC |
| 20 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
| 21 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 22 |
20 21
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
| 23 |
1 22
|
ressbas2 |
|- ( ( CC \ { 0 } ) C_ CC -> ( CC \ { 0 } ) = ( Base ` M ) ) |
| 24 |
19 23
|
ax-mp |
|- ( CC \ { 0 } ) = ( Base ` M ) |
| 25 |
|
cnex |
|- CC e. _V |
| 26 |
|
difexg |
|- ( CC e. _V -> ( CC \ { 0 } ) e. _V ) |
| 27 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 28 |
20 27
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
| 29 |
1 28
|
ressplusg |
|- ( ( CC \ { 0 } ) e. _V -> x. = ( +g ` M ) ) |
| 30 |
25 26 29
|
mp2b |
|- x. = ( +g ` M ) |
| 31 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 32 |
|
cndrng |
|- CCfld e. DivRing |
| 33 |
21 31 32
|
drngui |
|- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
| 34 |
|
eqid |
|- ( invr ` CCfld ) = ( invr ` CCfld ) |
| 35 |
33 1 34
|
invrfval |
|- ( invr ` CCfld ) = ( invg ` M ) |
| 36 |
24 30 35
|
issubg2 |
|- ( M e. Grp -> ( A e. ( SubGrp ` M ) <-> ( A C_ ( CC \ { 0 } ) /\ A =/= (/) /\ A. x e. A ( A. y e. A ( x x. y ) e. A /\ ( ( invr ` CCfld ) ` x ) e. A ) ) ) ) |
| 37 |
17 18 36
|
mp2b |
|- ( A e. ( SubGrp ` M ) <-> ( A C_ ( CC \ { 0 } ) /\ A =/= (/) /\ A. x e. A ( A. y e. A ( x x. y ) e. A /\ ( ( invr ` CCfld ) ` x ) e. A ) ) ) |
| 38 |
9 10 16 37
|
mpbir3an |
|- A e. ( SubGrp ` M ) |