Description: The complex numbers form a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnngp | |- CCfld e. NrmGrp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnring | |- CCfld e. Ring |
|
| 2 | ringgrp | |- ( CCfld e. Ring -> CCfld e. Grp ) |
|
| 3 | 1 2 | ax-mp | |- CCfld e. Grp |
| 4 | cnfldms | |- CCfld e. MetSp |
|
| 5 | ssid | |- ( abs o. - ) C_ ( abs o. - ) |
|
| 6 | cnfldnm | |- abs = ( norm ` CCfld ) |
|
| 7 | cnfldsub | |- - = ( -g ` CCfld ) |
|
| 8 | cnfldds | |- ( abs o. - ) = ( dist ` CCfld ) |
|
| 9 | 6 7 8 | isngp | |- ( CCfld e. NrmGrp <-> ( CCfld e. Grp /\ CCfld e. MetSp /\ ( abs o. - ) C_ ( abs o. - ) ) ) |
| 10 | 3 4 5 9 | mpbir3an | |- CCfld e. NrmGrp |