Description: The complex numbers form a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnnrg | |- CCfld e. NrmRing | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnngp | |- CCfld e. NrmGrp | |
| 2 | absabv | |- abs e. ( AbsVal ` CCfld ) | |
| 3 | cnfldnm | |- abs = ( norm ` CCfld ) | |
| 4 | eqid | |- ( AbsVal ` CCfld ) = ( AbsVal ` CCfld ) | |
| 5 | 3 4 | isnrg | |- ( CCfld e. NrmRing <-> ( CCfld e. NrmGrp /\ abs e. ( AbsVal ` CCfld ) ) ) | 
| 6 | 1 2 5 | mpbir2an | |- CCfld e. NrmRing |