Description: The complex numbers form a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | cnnrg | |- CCfld e. NrmRing |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnngp | |- CCfld e. NrmGrp |
|
2 | absabv | |- abs e. ( AbsVal ` CCfld ) |
|
3 | cnfldnm | |- abs = ( norm ` CCfld ) |
|
4 | eqid | |- ( AbsVal ` CCfld ) = ( AbsVal ` CCfld ) |
|
5 | 3 4 | isnrg | |- ( CCfld e. NrmRing <-> ( CCfld e. NrmGrp /\ abs e. ( AbsVal ` CCfld ) ) ) |
6 | 1 2 5 | mpbir2an | |- CCfld e. NrmRing |