Step |
Hyp |
Ref |
Expression |
1 |
|
cnnvba.6 |
|- U = <. <. + , x. >. , abs >. |
2 |
1
|
cnnvg |
|- + = ( +v ` U ) |
3 |
2
|
rneqi |
|- ran + = ran ( +v ` U ) |
4 |
|
cnaddabloOLD |
|- + e. AbelOp |
5 |
|
ablogrpo |
|- ( + e. AbelOp -> + e. GrpOp ) |
6 |
4 5
|
ax-mp |
|- + e. GrpOp |
7 |
|
ax-addf |
|- + : ( CC X. CC ) --> CC |
8 |
7
|
fdmi |
|- dom + = ( CC X. CC ) |
9 |
6 8
|
grporn |
|- CC = ran + |
10 |
|
eqid |
|- ( BaseSet ` U ) = ( BaseSet ` U ) |
11 |
|
eqid |
|- ( +v ` U ) = ( +v ` U ) |
12 |
10 11
|
bafval |
|- ( BaseSet ` U ) = ran ( +v ` U ) |
13 |
3 9 12
|
3eqtr4i |
|- CC = ( BaseSet ` U ) |