Step |
Hyp |
Ref |
Expression |
1 |
|
cnnvm.6 |
|- U = <. <. + , x. >. , abs >. |
2 |
|
mulm1 |
|- ( y e. CC -> ( -u 1 x. y ) = -u y ) |
3 |
2
|
adantl |
|- ( ( x e. CC /\ y e. CC ) -> ( -u 1 x. y ) = -u y ) |
4 |
3
|
oveq2d |
|- ( ( x e. CC /\ y e. CC ) -> ( x + ( -u 1 x. y ) ) = ( x + -u y ) ) |
5 |
|
negsub |
|- ( ( x e. CC /\ y e. CC ) -> ( x + -u y ) = ( x - y ) ) |
6 |
4 5
|
eqtr2d |
|- ( ( x e. CC /\ y e. CC ) -> ( x - y ) = ( x + ( -u 1 x. y ) ) ) |
7 |
6
|
mpoeq3ia |
|- ( x e. CC , y e. CC |-> ( x - y ) ) = ( x e. CC , y e. CC |-> ( x + ( -u 1 x. y ) ) ) |
8 |
|
subf |
|- - : ( CC X. CC ) --> CC |
9 |
|
ffn |
|- ( - : ( CC X. CC ) --> CC -> - Fn ( CC X. CC ) ) |
10 |
8 9
|
ax-mp |
|- - Fn ( CC X. CC ) |
11 |
|
fnov |
|- ( - Fn ( CC X. CC ) <-> - = ( x e. CC , y e. CC |-> ( x - y ) ) ) |
12 |
10 11
|
mpbi |
|- - = ( x e. CC , y e. CC |-> ( x - y ) ) |
13 |
1
|
cnnv |
|- U e. NrmCVec |
14 |
1
|
cnnvba |
|- CC = ( BaseSet ` U ) |
15 |
1
|
cnnvg |
|- + = ( +v ` U ) |
16 |
1
|
cnnvs |
|- x. = ( .sOLD ` U ) |
17 |
|
eqid |
|- ( -v ` U ) = ( -v ` U ) |
18 |
14 15 16 17
|
nvmfval |
|- ( U e. NrmCVec -> ( -v ` U ) = ( x e. CC , y e. CC |-> ( x + ( -u 1 x. y ) ) ) ) |
19 |
13 18
|
ax-mp |
|- ( -v ` U ) = ( x e. CC , y e. CC |-> ( x + ( -u 1 x. y ) ) ) |
20 |
7 12 19
|
3eqtr4i |
|- - = ( -v ` U ) |