Metamath Proof Explorer


Theorem cnnvnm

Description: The norm operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypothesis cnnvnm.6
|- U = <. <. + , x. >. , abs >.
Assertion cnnvnm
|- abs = ( normCV ` U )

Proof

Step Hyp Ref Expression
1 cnnvnm.6
 |-  U = <. <. + , x. >. , abs >.
2 eqid
 |-  ( normCV ` U ) = ( normCV ` U )
3 2 nmcvfval
 |-  ( normCV ` U ) = ( 2nd ` U )
4 1 fveq2i
 |-  ( 2nd ` U ) = ( 2nd ` <. <. + , x. >. , abs >. )
5 opex
 |-  <. + , x. >. e. _V
6 absf
 |-  abs : CC --> RR
7 cnex
 |-  CC e. _V
8 fex
 |-  ( ( abs : CC --> RR /\ CC e. _V ) -> abs e. _V )
9 6 7 8 mp2an
 |-  abs e. _V
10 5 9 op2nd
 |-  ( 2nd ` <. <. + , x. >. , abs >. ) = abs
11 3 4 10 3eqtrri
 |-  abs = ( normCV ` U )