Step |
Hyp |
Ref |
Expression |
1 |
|
elcnop |
|- ( T e. ContOp <-> ( T : ~H --> ~H /\ A. z e. ~H A. w e. RR+ E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h z ) ) < x -> ( normh ` ( ( T ` y ) -h ( T ` z ) ) ) < w ) ) ) |
2 |
1
|
simprbi |
|- ( T e. ContOp -> A. z e. ~H A. w e. RR+ E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h z ) ) < x -> ( normh ` ( ( T ` y ) -h ( T ` z ) ) ) < w ) ) |
3 |
|
oveq2 |
|- ( z = A -> ( y -h z ) = ( y -h A ) ) |
4 |
3
|
fveq2d |
|- ( z = A -> ( normh ` ( y -h z ) ) = ( normh ` ( y -h A ) ) ) |
5 |
4
|
breq1d |
|- ( z = A -> ( ( normh ` ( y -h z ) ) < x <-> ( normh ` ( y -h A ) ) < x ) ) |
6 |
|
fveq2 |
|- ( z = A -> ( T ` z ) = ( T ` A ) ) |
7 |
6
|
oveq2d |
|- ( z = A -> ( ( T ` y ) -h ( T ` z ) ) = ( ( T ` y ) -h ( T ` A ) ) ) |
8 |
7
|
fveq2d |
|- ( z = A -> ( normh ` ( ( T ` y ) -h ( T ` z ) ) ) = ( normh ` ( ( T ` y ) -h ( T ` A ) ) ) ) |
9 |
8
|
breq1d |
|- ( z = A -> ( ( normh ` ( ( T ` y ) -h ( T ` z ) ) ) < w <-> ( normh ` ( ( T ` y ) -h ( T ` A ) ) ) < w ) ) |
10 |
5 9
|
imbi12d |
|- ( z = A -> ( ( ( normh ` ( y -h z ) ) < x -> ( normh ` ( ( T ` y ) -h ( T ` z ) ) ) < w ) <-> ( ( normh ` ( y -h A ) ) < x -> ( normh ` ( ( T ` y ) -h ( T ` A ) ) ) < w ) ) ) |
11 |
10
|
rexralbidv |
|- ( z = A -> ( E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h z ) ) < x -> ( normh ` ( ( T ` y ) -h ( T ` z ) ) ) < w ) <-> E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h A ) ) < x -> ( normh ` ( ( T ` y ) -h ( T ` A ) ) ) < w ) ) ) |
12 |
|
breq2 |
|- ( w = B -> ( ( normh ` ( ( T ` y ) -h ( T ` A ) ) ) < w <-> ( normh ` ( ( T ` y ) -h ( T ` A ) ) ) < B ) ) |
13 |
12
|
imbi2d |
|- ( w = B -> ( ( ( normh ` ( y -h A ) ) < x -> ( normh ` ( ( T ` y ) -h ( T ` A ) ) ) < w ) <-> ( ( normh ` ( y -h A ) ) < x -> ( normh ` ( ( T ` y ) -h ( T ` A ) ) ) < B ) ) ) |
14 |
13
|
rexralbidv |
|- ( w = B -> ( E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h A ) ) < x -> ( normh ` ( ( T ` y ) -h ( T ` A ) ) ) < w ) <-> E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h A ) ) < x -> ( normh ` ( ( T ` y ) -h ( T ` A ) ) ) < B ) ) ) |
15 |
11 14
|
rspc2v |
|- ( ( A e. ~H /\ B e. RR+ ) -> ( A. z e. ~H A. w e. RR+ E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h z ) ) < x -> ( normh ` ( ( T ` y ) -h ( T ` z ) ) ) < w ) -> E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h A ) ) < x -> ( normh ` ( ( T ` y ) -h ( T ` A ) ) ) < B ) ) ) |
16 |
2 15
|
syl5com |
|- ( T e. ContOp -> ( ( A e. ~H /\ B e. RR+ ) -> E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h A ) ) < x -> ( normh ` ( ( T ` y ) -h ( T ` A ) ) ) < B ) ) ) |
17 |
16
|
3impib |
|- ( ( T e. ContOp /\ A e. ~H /\ B e. RR+ ) -> E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h A ) ) < x -> ( normh ` ( ( T ` y ) -h ( T ` A ) ) ) < B ) ) |