| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-nel |
|- ( -u ( _i x. A ) e/ RR+ <-> -. -u ( _i x. A ) e. RR+ ) |
| 2 |
|
simpr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( Re ` A ) = 0 ) |
| 3 |
|
0le0 |
|- 0 <_ 0 |
| 4 |
2 3
|
eqbrtrdi |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( Re ` A ) <_ 0 ) |
| 5 |
4
|
biantrurd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( -u ( _i x. A ) e/ RR+ <-> ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
| 6 |
1 5
|
bitr3id |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( -. -u ( _i x. A ) e. RR+ <-> ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
| 7 |
6
|
con1bid |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) <-> -u ( _i x. A ) e. RR+ ) ) |
| 8 |
|
ax-icn |
|- _i e. CC |
| 9 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 10 |
8 9
|
mpan |
|- ( A e. CC -> ( _i x. A ) e. CC ) |
| 11 |
|
reim0b |
|- ( ( _i x. A ) e. CC -> ( ( _i x. A ) e. RR <-> ( Im ` ( _i x. A ) ) = 0 ) ) |
| 12 |
10 11
|
syl |
|- ( A e. CC -> ( ( _i x. A ) e. RR <-> ( Im ` ( _i x. A ) ) = 0 ) ) |
| 13 |
|
imre |
|- ( ( _i x. A ) e. CC -> ( Im ` ( _i x. A ) ) = ( Re ` ( -u _i x. ( _i x. A ) ) ) ) |
| 14 |
10 13
|
syl |
|- ( A e. CC -> ( Im ` ( _i x. A ) ) = ( Re ` ( -u _i x. ( _i x. A ) ) ) ) |
| 15 |
|
ine0 |
|- _i =/= 0 |
| 16 |
|
divrec2 |
|- ( ( ( _i x. A ) e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( ( _i x. A ) / _i ) = ( ( 1 / _i ) x. ( _i x. A ) ) ) |
| 17 |
8 15 16
|
mp3an23 |
|- ( ( _i x. A ) e. CC -> ( ( _i x. A ) / _i ) = ( ( 1 / _i ) x. ( _i x. A ) ) ) |
| 18 |
10 17
|
syl |
|- ( A e. CC -> ( ( _i x. A ) / _i ) = ( ( 1 / _i ) x. ( _i x. A ) ) ) |
| 19 |
|
irec |
|- ( 1 / _i ) = -u _i |
| 20 |
19
|
oveq1i |
|- ( ( 1 / _i ) x. ( _i x. A ) ) = ( -u _i x. ( _i x. A ) ) |
| 21 |
18 20
|
eqtrdi |
|- ( A e. CC -> ( ( _i x. A ) / _i ) = ( -u _i x. ( _i x. A ) ) ) |
| 22 |
|
divcan3 |
|- ( ( A e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( ( _i x. A ) / _i ) = A ) |
| 23 |
8 15 22
|
mp3an23 |
|- ( A e. CC -> ( ( _i x. A ) / _i ) = A ) |
| 24 |
21 23
|
eqtr3d |
|- ( A e. CC -> ( -u _i x. ( _i x. A ) ) = A ) |
| 25 |
24
|
fveq2d |
|- ( A e. CC -> ( Re ` ( -u _i x. ( _i x. A ) ) ) = ( Re ` A ) ) |
| 26 |
14 25
|
eqtrd |
|- ( A e. CC -> ( Im ` ( _i x. A ) ) = ( Re ` A ) ) |
| 27 |
26
|
eqeq1d |
|- ( A e. CC -> ( ( Im ` ( _i x. A ) ) = 0 <-> ( Re ` A ) = 0 ) ) |
| 28 |
12 27
|
bitrd |
|- ( A e. CC -> ( ( _i x. A ) e. RR <-> ( Re ` A ) = 0 ) ) |
| 29 |
28
|
biimpar |
|- ( ( A e. CC /\ ( Re ` A ) = 0 ) -> ( _i x. A ) e. RR ) |
| 30 |
29
|
adantlr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( _i x. A ) e. RR ) |
| 31 |
|
mulne0 |
|- ( ( ( _i e. CC /\ _i =/= 0 ) /\ ( A e. CC /\ A =/= 0 ) ) -> ( _i x. A ) =/= 0 ) |
| 32 |
8 15 31
|
mpanl12 |
|- ( ( A e. CC /\ A =/= 0 ) -> ( _i x. A ) =/= 0 ) |
| 33 |
32
|
adantr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( _i x. A ) =/= 0 ) |
| 34 |
|
rpneg |
|- ( ( ( _i x. A ) e. RR /\ ( _i x. A ) =/= 0 ) -> ( ( _i x. A ) e. RR+ <-> -. -u ( _i x. A ) e. RR+ ) ) |
| 35 |
30 33 34
|
syl2anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( ( _i x. A ) e. RR+ <-> -. -u ( _i x. A ) e. RR+ ) ) |
| 36 |
35
|
con2bid |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( -u ( _i x. A ) e. RR+ <-> -. ( _i x. A ) e. RR+ ) ) |
| 37 |
|
df-nel |
|- ( ( _i x. A ) e/ RR+ <-> -. ( _i x. A ) e. RR+ ) |
| 38 |
36 37
|
bitr4di |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( -u ( _i x. A ) e. RR+ <-> ( _i x. A ) e/ RR+ ) ) |
| 39 |
3 2
|
breqtrrid |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> 0 <_ ( Re ` A ) ) |
| 40 |
39
|
biantrurd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( ( _i x. A ) e/ RR+ <-> ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) ) ) |
| 41 |
7 38 40
|
3bitrrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) <-> -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
| 42 |
28
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( _i x. A ) e. RR <-> ( Re ` A ) = 0 ) ) |
| 43 |
42
|
necon3bbid |
|- ( ( A e. CC /\ A =/= 0 ) -> ( -. ( _i x. A ) e. RR <-> ( Re ` A ) =/= 0 ) ) |
| 44 |
43
|
biimpar |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> -. ( _i x. A ) e. RR ) |
| 45 |
|
rpre |
|- ( ( _i x. A ) e. RR+ -> ( _i x. A ) e. RR ) |
| 46 |
44 45
|
nsyl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> -. ( _i x. A ) e. RR+ ) |
| 47 |
46 37
|
sylibr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( _i x. A ) e/ RR+ ) |
| 48 |
47
|
biantrud |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( 0 <_ ( Re ` A ) <-> ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) ) ) |
| 49 |
|
simpr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) =/= 0 ) |
| 50 |
49
|
biantrud |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( 0 <_ ( Re ` A ) <-> ( 0 <_ ( Re ` A ) /\ ( Re ` A ) =/= 0 ) ) ) |
| 51 |
|
0re |
|- 0 e. RR |
| 52 |
|
recl |
|- ( A e. CC -> ( Re ` A ) e. RR ) |
| 53 |
|
ltlen |
|- ( ( 0 e. RR /\ ( Re ` A ) e. RR ) -> ( 0 < ( Re ` A ) <-> ( 0 <_ ( Re ` A ) /\ ( Re ` A ) =/= 0 ) ) ) |
| 54 |
|
ltnle |
|- ( ( 0 e. RR /\ ( Re ` A ) e. RR ) -> ( 0 < ( Re ` A ) <-> -. ( Re ` A ) <_ 0 ) ) |
| 55 |
53 54
|
bitr3d |
|- ( ( 0 e. RR /\ ( Re ` A ) e. RR ) -> ( ( 0 <_ ( Re ` A ) /\ ( Re ` A ) =/= 0 ) <-> -. ( Re ` A ) <_ 0 ) ) |
| 56 |
51 52 55
|
sylancr |
|- ( A e. CC -> ( ( 0 <_ ( Re ` A ) /\ ( Re ` A ) =/= 0 ) <-> -. ( Re ` A ) <_ 0 ) ) |
| 57 |
56
|
ad2antrr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( ( 0 <_ ( Re ` A ) /\ ( Re ` A ) =/= 0 ) <-> -. ( Re ` A ) <_ 0 ) ) |
| 58 |
50 57
|
bitrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( 0 <_ ( Re ` A ) <-> -. ( Re ` A ) <_ 0 ) ) |
| 59 |
48 58
|
bitr3d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) <-> -. ( Re ` A ) <_ 0 ) ) |
| 60 |
|
renegcl |
|- ( -u ( _i x. A ) e. RR -> -u -u ( _i x. A ) e. RR ) |
| 61 |
10
|
negnegd |
|- ( A e. CC -> -u -u ( _i x. A ) = ( _i x. A ) ) |
| 62 |
61
|
eleq1d |
|- ( A e. CC -> ( -u -u ( _i x. A ) e. RR <-> ( _i x. A ) e. RR ) ) |
| 63 |
62
|
ad2antrr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( -u -u ( _i x. A ) e. RR <-> ( _i x. A ) e. RR ) ) |
| 64 |
60 63
|
imbitrid |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( -u ( _i x. A ) e. RR -> ( _i x. A ) e. RR ) ) |
| 65 |
44 64
|
mtod |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> -. -u ( _i x. A ) e. RR ) |
| 66 |
|
rpre |
|- ( -u ( _i x. A ) e. RR+ -> -u ( _i x. A ) e. RR ) |
| 67 |
65 66
|
nsyl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> -. -u ( _i x. A ) e. RR+ ) |
| 68 |
67 1
|
sylibr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> -u ( _i x. A ) e/ RR+ ) |
| 69 |
68
|
biantrud |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( ( Re ` A ) <_ 0 <-> ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
| 70 |
69
|
notbid |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( -. ( Re ` A ) <_ 0 <-> -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
| 71 |
59 70
|
bitrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) <-> -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
| 72 |
41 71
|
pm2.61dane |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) <-> -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
| 73 |
|
reneg |
|- ( A e. CC -> ( Re ` -u A ) = -u ( Re ` A ) ) |
| 74 |
73
|
breq2d |
|- ( A e. CC -> ( 0 <_ ( Re ` -u A ) <-> 0 <_ -u ( Re ` A ) ) ) |
| 75 |
52
|
le0neg1d |
|- ( A e. CC -> ( ( Re ` A ) <_ 0 <-> 0 <_ -u ( Re ` A ) ) ) |
| 76 |
74 75
|
bitr4d |
|- ( A e. CC -> ( 0 <_ ( Re ` -u A ) <-> ( Re ` A ) <_ 0 ) ) |
| 77 |
|
mulneg2 |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) |
| 78 |
8 77
|
mpan |
|- ( A e. CC -> ( _i x. -u A ) = -u ( _i x. A ) ) |
| 79 |
|
neleq1 |
|- ( ( _i x. -u A ) = -u ( _i x. A ) -> ( ( _i x. -u A ) e/ RR+ <-> -u ( _i x. A ) e/ RR+ ) ) |
| 80 |
78 79
|
syl |
|- ( A e. CC -> ( ( _i x. -u A ) e/ RR+ <-> -u ( _i x. A ) e/ RR+ ) ) |
| 81 |
76 80
|
anbi12d |
|- ( A e. CC -> ( ( 0 <_ ( Re ` -u A ) /\ ( _i x. -u A ) e/ RR+ ) <-> ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
| 82 |
81
|
notbid |
|- ( A e. CC -> ( -. ( 0 <_ ( Re ` -u A ) /\ ( _i x. -u A ) e/ RR+ ) <-> -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
| 83 |
82
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( -. ( 0 <_ ( Re ` -u A ) /\ ( _i x. -u A ) e/ RR+ ) <-> -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
| 84 |
72 83
|
bitr4d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) <-> -. ( 0 <_ ( Re ` -u A ) /\ ( _i x. -u A ) e/ RR+ ) ) ) |