Step |
Hyp |
Ref |
Expression |
1 |
|
df-nel |
|- ( -u ( _i x. A ) e/ RR+ <-> -. -u ( _i x. A ) e. RR+ ) |
2 |
|
simpr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( Re ` A ) = 0 ) |
3 |
|
0le0 |
|- 0 <_ 0 |
4 |
2 3
|
eqbrtrdi |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( Re ` A ) <_ 0 ) |
5 |
4
|
biantrurd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( -u ( _i x. A ) e/ RR+ <-> ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
6 |
1 5
|
bitr3id |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( -. -u ( _i x. A ) e. RR+ <-> ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
7 |
6
|
con1bid |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) <-> -u ( _i x. A ) e. RR+ ) ) |
8 |
|
ax-icn |
|- _i e. CC |
9 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
10 |
8 9
|
mpan |
|- ( A e. CC -> ( _i x. A ) e. CC ) |
11 |
|
reim0b |
|- ( ( _i x. A ) e. CC -> ( ( _i x. A ) e. RR <-> ( Im ` ( _i x. A ) ) = 0 ) ) |
12 |
10 11
|
syl |
|- ( A e. CC -> ( ( _i x. A ) e. RR <-> ( Im ` ( _i x. A ) ) = 0 ) ) |
13 |
|
imre |
|- ( ( _i x. A ) e. CC -> ( Im ` ( _i x. A ) ) = ( Re ` ( -u _i x. ( _i x. A ) ) ) ) |
14 |
10 13
|
syl |
|- ( A e. CC -> ( Im ` ( _i x. A ) ) = ( Re ` ( -u _i x. ( _i x. A ) ) ) ) |
15 |
|
ine0 |
|- _i =/= 0 |
16 |
|
divrec2 |
|- ( ( ( _i x. A ) e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( ( _i x. A ) / _i ) = ( ( 1 / _i ) x. ( _i x. A ) ) ) |
17 |
8 15 16
|
mp3an23 |
|- ( ( _i x. A ) e. CC -> ( ( _i x. A ) / _i ) = ( ( 1 / _i ) x. ( _i x. A ) ) ) |
18 |
10 17
|
syl |
|- ( A e. CC -> ( ( _i x. A ) / _i ) = ( ( 1 / _i ) x. ( _i x. A ) ) ) |
19 |
|
irec |
|- ( 1 / _i ) = -u _i |
20 |
19
|
oveq1i |
|- ( ( 1 / _i ) x. ( _i x. A ) ) = ( -u _i x. ( _i x. A ) ) |
21 |
18 20
|
eqtrdi |
|- ( A e. CC -> ( ( _i x. A ) / _i ) = ( -u _i x. ( _i x. A ) ) ) |
22 |
|
divcan3 |
|- ( ( A e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( ( _i x. A ) / _i ) = A ) |
23 |
8 15 22
|
mp3an23 |
|- ( A e. CC -> ( ( _i x. A ) / _i ) = A ) |
24 |
21 23
|
eqtr3d |
|- ( A e. CC -> ( -u _i x. ( _i x. A ) ) = A ) |
25 |
24
|
fveq2d |
|- ( A e. CC -> ( Re ` ( -u _i x. ( _i x. A ) ) ) = ( Re ` A ) ) |
26 |
14 25
|
eqtrd |
|- ( A e. CC -> ( Im ` ( _i x. A ) ) = ( Re ` A ) ) |
27 |
26
|
eqeq1d |
|- ( A e. CC -> ( ( Im ` ( _i x. A ) ) = 0 <-> ( Re ` A ) = 0 ) ) |
28 |
12 27
|
bitrd |
|- ( A e. CC -> ( ( _i x. A ) e. RR <-> ( Re ` A ) = 0 ) ) |
29 |
28
|
biimpar |
|- ( ( A e. CC /\ ( Re ` A ) = 0 ) -> ( _i x. A ) e. RR ) |
30 |
29
|
adantlr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( _i x. A ) e. RR ) |
31 |
|
mulne0 |
|- ( ( ( _i e. CC /\ _i =/= 0 ) /\ ( A e. CC /\ A =/= 0 ) ) -> ( _i x. A ) =/= 0 ) |
32 |
8 15 31
|
mpanl12 |
|- ( ( A e. CC /\ A =/= 0 ) -> ( _i x. A ) =/= 0 ) |
33 |
32
|
adantr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( _i x. A ) =/= 0 ) |
34 |
|
rpneg |
|- ( ( ( _i x. A ) e. RR /\ ( _i x. A ) =/= 0 ) -> ( ( _i x. A ) e. RR+ <-> -. -u ( _i x. A ) e. RR+ ) ) |
35 |
30 33 34
|
syl2anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( ( _i x. A ) e. RR+ <-> -. -u ( _i x. A ) e. RR+ ) ) |
36 |
35
|
con2bid |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( -u ( _i x. A ) e. RR+ <-> -. ( _i x. A ) e. RR+ ) ) |
37 |
|
df-nel |
|- ( ( _i x. A ) e/ RR+ <-> -. ( _i x. A ) e. RR+ ) |
38 |
36 37
|
bitr4di |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( -u ( _i x. A ) e. RR+ <-> ( _i x. A ) e/ RR+ ) ) |
39 |
3 2
|
breqtrrid |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> 0 <_ ( Re ` A ) ) |
40 |
39
|
biantrurd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( ( _i x. A ) e/ RR+ <-> ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) ) ) |
41 |
7 38 40
|
3bitrrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) <-> -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
42 |
28
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( _i x. A ) e. RR <-> ( Re ` A ) = 0 ) ) |
43 |
42
|
necon3bbid |
|- ( ( A e. CC /\ A =/= 0 ) -> ( -. ( _i x. A ) e. RR <-> ( Re ` A ) =/= 0 ) ) |
44 |
43
|
biimpar |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> -. ( _i x. A ) e. RR ) |
45 |
|
rpre |
|- ( ( _i x. A ) e. RR+ -> ( _i x. A ) e. RR ) |
46 |
44 45
|
nsyl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> -. ( _i x. A ) e. RR+ ) |
47 |
46 37
|
sylibr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( _i x. A ) e/ RR+ ) |
48 |
47
|
biantrud |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( 0 <_ ( Re ` A ) <-> ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) ) ) |
49 |
|
simpr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) =/= 0 ) |
50 |
49
|
biantrud |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( 0 <_ ( Re ` A ) <-> ( 0 <_ ( Re ` A ) /\ ( Re ` A ) =/= 0 ) ) ) |
51 |
|
0re |
|- 0 e. RR |
52 |
|
recl |
|- ( A e. CC -> ( Re ` A ) e. RR ) |
53 |
|
ltlen |
|- ( ( 0 e. RR /\ ( Re ` A ) e. RR ) -> ( 0 < ( Re ` A ) <-> ( 0 <_ ( Re ` A ) /\ ( Re ` A ) =/= 0 ) ) ) |
54 |
|
ltnle |
|- ( ( 0 e. RR /\ ( Re ` A ) e. RR ) -> ( 0 < ( Re ` A ) <-> -. ( Re ` A ) <_ 0 ) ) |
55 |
53 54
|
bitr3d |
|- ( ( 0 e. RR /\ ( Re ` A ) e. RR ) -> ( ( 0 <_ ( Re ` A ) /\ ( Re ` A ) =/= 0 ) <-> -. ( Re ` A ) <_ 0 ) ) |
56 |
51 52 55
|
sylancr |
|- ( A e. CC -> ( ( 0 <_ ( Re ` A ) /\ ( Re ` A ) =/= 0 ) <-> -. ( Re ` A ) <_ 0 ) ) |
57 |
56
|
ad2antrr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( ( 0 <_ ( Re ` A ) /\ ( Re ` A ) =/= 0 ) <-> -. ( Re ` A ) <_ 0 ) ) |
58 |
50 57
|
bitrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( 0 <_ ( Re ` A ) <-> -. ( Re ` A ) <_ 0 ) ) |
59 |
48 58
|
bitr3d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) <-> -. ( Re ` A ) <_ 0 ) ) |
60 |
|
renegcl |
|- ( -u ( _i x. A ) e. RR -> -u -u ( _i x. A ) e. RR ) |
61 |
10
|
negnegd |
|- ( A e. CC -> -u -u ( _i x. A ) = ( _i x. A ) ) |
62 |
61
|
eleq1d |
|- ( A e. CC -> ( -u -u ( _i x. A ) e. RR <-> ( _i x. A ) e. RR ) ) |
63 |
62
|
ad2antrr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( -u -u ( _i x. A ) e. RR <-> ( _i x. A ) e. RR ) ) |
64 |
60 63
|
syl5ib |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( -u ( _i x. A ) e. RR -> ( _i x. A ) e. RR ) ) |
65 |
44 64
|
mtod |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> -. -u ( _i x. A ) e. RR ) |
66 |
|
rpre |
|- ( -u ( _i x. A ) e. RR+ -> -u ( _i x. A ) e. RR ) |
67 |
65 66
|
nsyl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> -. -u ( _i x. A ) e. RR+ ) |
68 |
67 1
|
sylibr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> -u ( _i x. A ) e/ RR+ ) |
69 |
68
|
biantrud |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( ( Re ` A ) <_ 0 <-> ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
70 |
69
|
notbid |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( -. ( Re ` A ) <_ 0 <-> -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
71 |
59 70
|
bitrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) <-> -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
72 |
41 71
|
pm2.61dane |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) <-> -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
73 |
|
reneg |
|- ( A e. CC -> ( Re ` -u A ) = -u ( Re ` A ) ) |
74 |
73
|
breq2d |
|- ( A e. CC -> ( 0 <_ ( Re ` -u A ) <-> 0 <_ -u ( Re ` A ) ) ) |
75 |
52
|
le0neg1d |
|- ( A e. CC -> ( ( Re ` A ) <_ 0 <-> 0 <_ -u ( Re ` A ) ) ) |
76 |
74 75
|
bitr4d |
|- ( A e. CC -> ( 0 <_ ( Re ` -u A ) <-> ( Re ` A ) <_ 0 ) ) |
77 |
|
mulneg2 |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) |
78 |
8 77
|
mpan |
|- ( A e. CC -> ( _i x. -u A ) = -u ( _i x. A ) ) |
79 |
|
neleq1 |
|- ( ( _i x. -u A ) = -u ( _i x. A ) -> ( ( _i x. -u A ) e/ RR+ <-> -u ( _i x. A ) e/ RR+ ) ) |
80 |
78 79
|
syl |
|- ( A e. CC -> ( ( _i x. -u A ) e/ RR+ <-> -u ( _i x. A ) e/ RR+ ) ) |
81 |
76 80
|
anbi12d |
|- ( A e. CC -> ( ( 0 <_ ( Re ` -u A ) /\ ( _i x. -u A ) e/ RR+ ) <-> ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
82 |
81
|
notbid |
|- ( A e. CC -> ( -. ( 0 <_ ( Re ` -u A ) /\ ( _i x. -u A ) e/ RR+ ) <-> -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
83 |
82
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( -. ( 0 <_ ( Re ` -u A ) /\ ( _i x. -u A ) e/ RR+ ) <-> -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
84 |
72 83
|
bitr4d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) <-> -. ( 0 <_ ( Re ` -u A ) /\ ( _i x. -u A ) e/ RR+ ) ) ) |